scholarly journals Historically Stagnate, the Number of US FDA Medical Device Guidelines Have Been Growing Quickly Since The Mid-2010s: While Partially Due to COVID-19 and Digital Health Technologies, Is the Upward Trend Now Permanent?

2021 ◽  
Author(s):  
Iraj Daizadeh

In the United States (US), the Food and Drug Administration (FDA) regulates medical devices (MDs). Though not a fair comparison but for illustrative purposes: a majority of medical products are MDs and not medicines (drug/biologics). Ignoring the minor contribution of drug/biologic-MD combinations, in 2020 alone, there were at least 5000 medical devices (roughly 50% of which were PMAs) registered versus that of 1600 for new or supplemental drug or biologics approvals (of which less than 10% were new). However, as discussed here, since the first recorded FDA MD guideline (February, 1975) until 2015, the number of MD guidelines have been historically stagnate (relative to those of medicines). Even when considering accommodations due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; COVID-19) pandemic and activity in digital health technologies, there still seems to be an upward trend. The question is why and for how long?

Author(s):  
Mike Jones ◽  
Frank DeRuyter ◽  
John Morris

This article serves as the introduction to this special issue on Mobile Health and Mobile Rehabilitation for People with Disabilities. Social, technological and policy trends are reviewed. Needs, opportunities and challenges for the emerging fields of mobile health (mHealth, aka eHealth) and mobile rehabilitation (mRehab) are discussed. Healthcare in the United States (U.S.) is at a critical juncture characterized by: (1) a growing need for healthcare and rehabilitation services; (2) maturing technological capabilities to support more effective and efficient health services; (3) evolving public policies designed, by turns, to contain cost and support new models of care; and (4) a growing need to ensure acceptance and usability of new health technologies by people with disabilities and chronic conditions, clinicians and health delivery systems. Discussion of demographic and population health data, healthcare service delivery and a public policy primarily focuses on the U.S. However, trends identified (aging populations, growing prevalence of chronic conditions and disability, labor shortages in healthcare) apply to most countries with advanced economies and others. Furthermore, technologies that enable mRehab (wearable sensors, in-home environmental monitors, cloud computing, artificial intelligence) transcend national boundaries. Remote and mobile healthcare delivery is needed and inevitable. Proactive engagement is critical to ensure acceptance and effectiveness for all stakeholders.


Iproceedings ◽  
2016 ◽  
Vol 2 (1) ◽  
pp. e14
Author(s):  
Thomas Walters ◽  
Benjamin Parcher ◽  
Alexander Kravetz ◽  
Chelsey Campbell ◽  
Manasee Shah

Author(s):  
Patricia J. Zettler ◽  
Erika Lietzan

This chapter assesses the regulation of medical devices in the United States. The goal of the US regulatory framework governing medical devices is the same as the goal of the framework governing medicines. US law aims to ensure that medical devices are safe and effective for their intended uses; that they become available for patients promptly; and that manufacturers provide truthful, non-misleading, and complete information about the products. US medical device law is different from US medicines law in many ways, however, perhaps most notably because most marketed devices do not require pre-market approval. The chapter explores how the US Food and Drug Administration (FDA) seeks to accomplish its mission with respect to medical devicecough its implementation of its medical device authorities. It starts by explaining what constitutes a medical device and how the FDA classifies medical devices by risk level. The chapter then discusses how medical devices reach the market, the FDA's risk management tools, and the rules and incentives for innovation and competition. It concludes by exploring case studies of innovative medical technologies that challenge the traditional US regulatory scheme to consider the future of medical device regulation.


10.2196/15727 ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. e15727 ◽  
Author(s):  
Yejin Lee ◽  
Mario C Raviglione ◽  
Antoine Flahault

Background Tuberculosis (TB) is the leading cause of death from a single infectious agent, with around 1.5 million deaths reported in 2018, and is a major contributor to suffering worldwide, with an estimated 10 million new cases every year. In the context of the World Health Organization’s End TB strategy and the quest for digital innovations, there is a need to understand what is happening around the world regarding research into the use of digital technology for better TB care and control. Objective The purpose of this scoping review was to summarize the state of research on the use of digital technology to enhance TB care and control. This study provides an overview of publications covering this subject and answers 3 main questions: (1) to what extent has the issue been addressed in the scientific literature between January 2016 and March 2019, (2) which countries have been investing in research in this field, and (3) what digital technologies were used? Methods A Web-based search was conducted on PubMed and Web of Science. Studies that describe the use of digital technology with specific reference to keywords such as TB, digital health, eHealth, and mHealth were included. Data from selected studies were synthesized into 4 functions using narrative and graphical methods. Such digital health interventions were categorized based on 2 classifications, one by function and the other by targeted user. Results A total of 145 relevant studies were identified out of the 1005 published between January 2016 and March 2019. Overall, 72.4% (105/145) of the research focused on patient care and 20.7% (30/145) on surveillance and monitoring. Other programmatic functions 4.8% (7/145) and electronic learning 2.1% (3/145) were less frequently studied. Most digital health technologies used for patient care included primarily diagnostic 59.4% (63/106) and treatment adherence tools 40.6% (43/106). On the basis of the second type of classification, 107 studies targeted health care providers (107/145, 73.8%), 20 studies targeted clients (20/145, 13.8%), 17 dealt with data services (17/145, 11.7%), and 1 study was on the health system or resource management. The first authors’ affiliations were mainly from 3 countries: the United States (30/145 studies, 20.7%), China (20/145 studies, 13.8%), and India (17/145 studies, 11.7%). The researchers from the United States conducted their research both domestically and abroad, whereas researchers from China and India conducted all studies domestically. Conclusions The majority of research conducted between January 2016 and March 2019 on digital interventions for TB focused on diagnostic tools and treatment adherence technologies, such as video-observed therapy and SMS. Only a few studies addressed interventions for data services and health system or resource management.


2021 ◽  
pp. 193229682110434
Author(s):  
Alexander N. Klonoff ◽  
Wei-An (Andy) Lee ◽  
Nicole Y. Xu ◽  
Kevin T. Nguyen ◽  
Ashley DuBord ◽  
...  

The digital health revolution is transforming the landscape of medicine through innovations in sensor data, software, and wireless communication tools. As one of the most prevalent chronic diseases in the United States, diabetes is particularly impactful as a model disease for which to apply innovation. As with any other newly developed technologies, there are three key questions to consider: 1) How can the technology benefit people with diabetes?, 2) What barriers must be overcome to further advance the technology?, and 3) How will the technology be applied in the future?. In this article, we highlight six areas of innovation that have the potential to reduce the burden of diabetes for individuals living with the condition and their families as well as provide measurable benefits for all stakeholders involved in diabetes care. The six technologies which have the potential to transform diabetes care are (i) telehealth, (ii) incorporation of diabetes digital data into the electronic health record, (iii) qualitative hypoglycemia alarms, (iv) artificial intelligence, (v) cybersecurity of diabetes devices, and (vi) diabetes registries. To be successful, a new digital health technology must be accessible and affordable. Furthermore, the people and communities that would most likely benefit from the technology must be willing to use the innovation in their management of diabetes.


Sign in / Sign up

Export Citation Format

Share Document