scholarly journals The limit y of the incident particle under the superradiance of Kerr black hole

2021 ◽  
Author(s):  
Wen-Xiang Chen

It is important to emphasize that as the reference has proved well, the critical storage line of black hole field system is universal, that is, different scalar field coupling functions with the same weak field behavior are $\{C(\phi) \} , C (\phi) =1+\alpha\phi ^{2} + o(\phi ^{4})$, and have the same function behavior $\alpha=\alpha (\mu); a / M) $. The purpose of this paper is to find out the limit $y$ of the incident particle under the superradiance of the preset boundary (${\mu} = {y}{\omega}$).

Author(s):  
Gulmina Zaman Babar ◽  
Abdullah Zaman Babar ◽  
Farruh Atamurotov

Abstract We have studied the null geodesics in the background of the Kerr–Newman black hole veiled by a plasma medium using the Hamilton–Jacobi method. The influence of black hole’s charge and plasma parameters on the effective potential and the generic photon orbits has been investigated. Furthermore, our discussion embodies the effects of black hole’s charge, plasma and the inclination angle on the shadow cast by the gravity with and without the spin parameter. We examined the energy released from the black hole as a result of the thermal radiations, which exclusively depends on the size of the shadow. The angle of deflection of the massless particles is also explored considering a weak-field approximation. We present our results in juxtaposition to the analogous black holes in General Relativity, particularly the Schwarzschild and Kerr black hole.


2015 ◽  
Vol 24 (09) ◽  
pp. 1542018 ◽  
Author(s):  
Carolina L. Benone ◽  
Luís C. B. Crispino ◽  
Carlos A. R. Herdeiro ◽  
Eugen Radu

We discuss stationary bound states, a.k.a. clouds, for a massless test scalar field around Kerr black holes (BHs) and spinning acoustic BH analogues. In view of the absence of a mass term, the trapping is achieved via enclosing the BH — scalar field system in a cavity and imposing Dirichlet or Neumann boundary conditions. We discuss the variation of these bounds states with the discrete parameters that label them, as well as their spatial distribution, complementing results in our previous work [C. L. Benone, L. C. B. Crispino, C. Herdeiro and E. Radu, Phys. Rev. D91 (2015) 104038].


Proceedings ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 6
Author(s):  
Carlos A. Benavides-Gallego ◽  
Ahmadjon-Abdujabbarov Abdujabbarov

In this work, we obtain the deflection angle for a boosted Kerr black hole in the weak field approximation using the optics in a curved spacetime developed by J. L. Synge in 1960. We study the behavior of light in the presence of plasma by considering different distributions: uniform plasma, singular isothermal sphere, non-singular isothermal gas sphere, and plasma in a galaxy cluster. We found that the dragging of the inertial system along with the boosted parameter Λ affect the value of the deflection angle. As an application, we studied the magnification for both uniform and singular isothermal distributions.


2010 ◽  
Author(s):  
Reinhard Horst Beyer ◽  
H. A. Morales-Tecotl ◽  
L. A. Urena-Lopez ◽  
R. Linares-Romero ◽  
H. H. Garcia-Compean

2019 ◽  
Vol 34 (16) ◽  
pp. 1950125
Author(s):  
V. B. Bezerra ◽  
J. M. Toledo

We calculate thermal corrections to the Casimir energy of a massless scalar field in the Kerr black hole surrounded by quintessence, taking into account the metrics derived by Ghosh [S. G. Ghosh, Eur. Phys. J. C 76, 222 (2016)] and Toshmatov et al. [B. Toshmatov, Z. Stuchlík and B. Ahmedov, Eur. Phys. J. Plus 132, 98 (2017)]. We compare both results and show that they are almost the same, except very close to the horizons. At [Formula: see text], equatorial plane, the results are the same, as should be expected, due to the fact that the metrics coincide in this region.


2017 ◽  
Vol 32 (21) ◽  
pp. 1775001 ◽  
Author(s):  
Bobir Toshmatov ◽  
Zdeněk Stuchlík ◽  
Bobomurat Ahmedov

This comment is devoted to the recalculation of the Casimir energy of a massless scalar field in the Kerr black hole surrounded by quintessence derived in [B. Toshmatov, Z. Stuchlík and B. Ahmedov, Eur. Phys. J. Plus 132, 98 (2017)] and its comparison with the results recently obtained in [V. B. Bezerra, M. S. Cunha, L. F. F. Freitas and C. R. Muniz, Mod. Phys. Lett. A 32, 1750005 (2017)] in the spacetime [S. G. Ghosh, Eur. Phys. J. C 76, 222 (2016)]. We have shown that in the more realistic spacetime which does not have the failures illustrated here, the Casimir energy is significantly bigger than that derived in [V. B. Bezerra, M. S. Cunha, L. F. F. Freitas and C. R. Muniz, Mod. Phys. Lett. A 32, 1750005 (2017)], and the difference becomes crucial especially in the regions of near horizons of the spacetime.


Sign in / Sign up

Export Citation Format

Share Document