scholarly journals Time-series analysis and statistical forecasting of daily rainfall in Kupang, East Nusa Tenggara, Indonesia: a pilot study

2022 ◽  
Author(s):  
Sandy Herho ◽  
Gisma Firdaus

This pilot study presents a novel statistical time-series approach for analyzing daily rainfall data in Kupang, East Nusa Tenggara, Indonesia. By using the piecewise cubic hermite interpolation algorithm, we succeeded in filling in the null values in the daily rainfall time series. We then analyzed the monthly average and its pattern using the continuous wavelet transform (CWT) algorithm, which shows the strong annual pattern of rainfall in this region. In addition, we use the rainfall anomaly index (RAI) function to standardize daily rainfall as an indicator of dry/wet conditions in this region. Then we also use the daily RAI time-series objects from 1978 to 2020 for modeling and predicting daily RAI over the next year. The result is the root mean squared error (RMSE) of 0.8424041040593219. This Prophet model is also able to capture the linear trend of increasing drought throughout the study time period and the annual pattern of wet/dry conditions which is in accordance with previous study by Aldrian and Susanto (2003).

2010 ◽  
Vol 7 (4) ◽  
pp. 4957-4994 ◽  
Author(s):  
R. Deidda

Abstract. Previous studies indicate the generalized Pareto distribution (GPD) as a suitable distribution function to reliably describe the exceedances of daily rainfall records above a proper optimum threshold, which should be selected as small as possible to retain the largest sample while assuring an acceptable fitting. Such an optimum threshold may differ from site to site, affecting consequently not only the GPD scale parameter, but also the probability of threshold exceedance. Thus a first objective of this paper is to derive some expressions to parameterize a simple threshold-invariant three-parameter distribution function which is able to describe zero and non zero values of rainfall time series by assuring a perfect overlapping with the GPD fitted on the exceedances of any threshold larger than the optimum one. Since the proposed distribution does not depend on the local thresholds adopted for fitting the GPD, it will only reflect the on-site climatic signature and thus appears particularly suitable for hydrological applications and regional analyses. A second objective is to develop and test the Multiple Threshold Method (MTM) to infer the parameters of interest on the exceedances of a wide range of thresholds using again the concept of parameters threshold-invariance. We show the ability of the MTM in fitting historical daily rainfall time series recorded with different resolutions. Finally, we prove the supremacy of the MTM fit against the standard single threshold fit, often adopted for partial duration series, by evaluating and comparing the performances on Monte Carlo samples drawn by GPDs with different shape and scale parameters and different discretizations.


2006 ◽  
Vol 10 (6) ◽  
pp. 807-815 ◽  
Author(s):  
E. Zehe ◽  
A. K. Singh ◽  
A. Bárdossy

Abstract. Within this study we present a robust method for generating precipitation time series for the Anas catchment in North Western India. The method employs a multivariate stochastic simulation model that is driven by a time series of objectively classified circulation patterns (CPs). In a companion study (Zehe et al., 2006) it was already shown that CPs classified from the 500 or 700 Hpa levels are suitable to explain space-time variability of precipitation in that area. The model is calibrated using observed rainfall time series for the period 1985–1992 for two different CP time series, one from the 500 Hpa level and the over from the 700 Hpa level, and 200 realizations of daily rainfall are simulated for the period 85–94. Simulations using the CPs from the 500 Hpa level as input yield a good match of the observed averages and standard deviations of daily rainfall. They show furthermore good performance at the monthly scale. When used with the 700 Hpa level CPs as inputs the model clearly underestimates the standard deviation and performs much worse at the monthly scale, especially in the validation period 93–94. The presented results give evidence that CPs from the 500 Hpa, level in combination with a multivariate stochastic model, make up a suitable tool for reducing the sparsity of precipitation data in developing regions with sparse hydro-meteorological data sets.


2013 ◽  
Vol 63 (2) ◽  
Author(s):  
Fadhilah Yusof ◽  
Ibrahim Lawal Kane ◽  
Zulkifli Yusop

The dependence structure of rainfall is usually very complex both in time and space. It is shown in this paper that the daily rainfall series of Ipoh and Alorsetar are affected by nonlinear characteristics of the variance often referred to as variance clustering or volatility, where large changes tend to follow large changes and small changes tend to follow small changes. In most empirical modeling of hydrological time series, the focus was on modeling and predicting the mean behavior of the time series through conventional methods of an Autoregressive Moving Average (ARMA) modeling proposed by the Box Jenkins methodology. The conventional models operate under the assumption that the series is stationary that is: constant mean and either constant variance or season-dependent variances, however, does not take into account the second order moment or conditional variance, but they form a good starting point for time series analysis. The residuals from preliminary ARIMA models derived from the daily rainfall time series were tested for ARCH behavior. The autocorrelation structure of the residuals and the squared residuals were inspected, the residuals are uncorrelated but the squared residuals show autocorrelation, the Ljung-Box test confirmed the results. McLeod-Li test and a test based on the Lagrange multiplier (LM) principle were applied to the squared residuals from ARIMA models. The results of these auxiliary tests show clear evidence to reject the null hypothesis of no ARCH effect. Hence indicates that GARCH modeling is necessary. Therefore the composite ARIMA-GARCH model captures the dynamics of the daily rainfall series in study areas more precisely. On the other hand, Seasonal ARIMA model became a suitable model for the monthly average rainfall series of the same locations treated.


2010 ◽  
Vol 14 (12) ◽  
pp. 2559-2575 ◽  
Author(s):  
R. Deidda

Abstract. Previous studies indicate the generalized Pareto distribution (GPD) as a suitable distribution function to reliably describe the exceedances of daily rainfall records above a proper optimum threshold, which should be selected as small as possible to retain the largest sample while assuring an acceptable fitting. Such an optimum threshold may differ from site to site, affecting consequently not only the GPD scale parameter, but also the probability of threshold exceedance. Thus a first objective of this paper is to derive some expressions to parameterize a simple threshold-invariant three-parameter distribution function which assures a perfect overlapping with the GPD fitted on the exceedances over any threshold larger than the optimum one. Since the proposed distribution does not depend on the local thresholds adopted for fitting the GPD, it is expected to reflect the on-site climatic signature and thus appears particularly suitable for hydrological applications and regional analyses. A second objective is to develop and test the Multiple Threshold Method (MTM) to infer the parameters of interest by using exceedances over a wide range of thresholds applying again the concept of parameters threshold-invariance. We show the ability of the MTM in fitting historical daily rainfall time series recorded with different resolutions and with a significative percentage of heavily quantized data. Finally, we prove the supremacy of the MTM fit against the standard single threshold fit, often adopted for partial duration series, by evaluating and comparing the performances on Monte Carlo samples drawn by GPDs with different shape and scale parameters and different discretizations.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Alefu Chinasho ◽  
Bobe Bedadi ◽  
Tesfaye Lemma ◽  
Tamado Tana ◽  
Tilahun Hordofa ◽  
...  

Meteorological stations, mainly located in developing countries, have gigantic missing values in the climate dataset (rainfall and temperature). Ignoring the missing values from analyses has been used as a technique to manage it. However, it leads to partial and biased results in data analyses. Instead, filling the data gaps using the reference datasets is a better and widely used approach. Thus, this study was initiated to evaluate the seven gap-filling techniques in daily rainfall datasets in five meteorological stations of Wolaita Zone and the surroundings in South Ethiopia. The considered gap-filling techniques in this study were simple arithmetic means (SAM), normal ratio method (NRM), correlation coefficient weighing (CCW), inverse distance weighting (IDW), multiple linear regression (MLR), empirical quantile mapping (EQM), and empirical quantile mapping plus (EQM+). The techniques were preferred because of their computational simplicity and appreciable accuracies. Their performance was evaluated against mean absolute error (MAE), root mean square error (RMSE), skill scores (SS), and Pearson’s correlation coefficients (R). The results indicated that MLR outperformed other techniques in all of the five meteorological stations. It showed the lowest RMSE and the highest SS and R in all stations. Four techniques (SAM, NRM, CCW, and IDW) showed similar performance and were second-ranked in all of the stations with little exceptions in time series. EQM+ improved (not substantial) the performance levels of gap-filling techniques in some stations. In general, MLR is suggested to fill in the missing values of the daily rainfall time series. However, the second-ranked techniques could also be used depending on the required time series (period) of each station. The techniques have better performance in stations located in higher altitudes. The authors expect a substantial contribution of this paper to the achievement of sustainable development goal thirteen (climate action) through the provision of gap-filling techniques with better accuracy.


2014 ◽  
Vol 11 (3) ◽  
pp. 3213-3247 ◽  
Author(s):  
F. Oriani ◽  
J. Straubhaar ◽  
P. Renard ◽  
G. Mariethoz

Abstract. The Direct Sampling technique, belonging to the family of multiple-point statistics, is proposed as a non-parametric alternative to the classical autoregressive and Markov-chain based models for daily rainfall time-series simulation. The algorithm makes use of the patterns contained inside the training image (the past rainfall record) to reproduce the complexity of the signal without inferring its prior statistical model: the time-series is simulated by sampling the training dataset where a sufficiently similar neighborhood exists. The advantage of this approach is the capability of simulating complex statistical relations by respecting the similarity of the patterns at different scales. The technique is applied to daily rainfall records from different climate settings, using a standard setup and without performing any optimization of the parameters. The results show that the overall statistics as well as the dry/wet spells patterns are simulated accurately. Also the extremes at the higher temporal scale are reproduced exhaustively, reducing the well known problem of over-dispersion.


2008 ◽  
Vol 41 (9) ◽  
pp. 959-967 ◽  
Author(s):  
Min-Soo Kyoung ◽  
Bellie Sivakumar ◽  
Hung-Soo Kim ◽  
Byung-Sik Kim

2018 ◽  
Vol 22 (10) ◽  
pp. 5259-5280 ◽  
Author(s):  
Hannes Müller-Thomy ◽  
Markus Wallner ◽  
Kristian Förster

Abstract. In this study, the influence of disaggregated rainfall products with different degrees of spatial consistence on rainfall–runoff modeling results is analyzed for three mesoscale catchments in Lower Saxony, Germany. For the disaggregation of daily rainfall time series into hourly values, a multiplicative random cascade model is applied. The disaggregation is applied on a station by station basis without consideration of surrounding stations; hence subsequent steps are then required to implement spatial consistence. Spatial consistence is represented here by three bivariate spatial rainfall characteristics that complement each other. A resampling algorithm and a parallelization approach are evaluated against the disaggregated time series without any subsequent steps. With respect to rainfall, clear differences between these three approaches can be identified regarding bivariate spatial rainfall characteristics, areal rainfall intensities and extreme values. The resampled time series lead to the best agreement with the observed ones. Using these different rainfall products as input to hydrological modeling, we hypothesize that derived runoff statistics – with emphasis on seasonal extreme values – are subject to similar differences as well. However, an impact on the extreme values' statistics of the hydrological simulations forced by different rainfall approaches cannot be detected. Several modifications of the study design using rainfall–runoff models with and without parameter calibration or using different rain gauge densities lead to similar results in runoff statistics. Only if the spatially highly resolved rainfall–runoff WaSiM model is applied instead of the semi-distributed HBV-IWW model can slight differences regarding the seasonal peak flows be identified. Hence, the hypothesis formulated before is rejected in this case study. These findings suggest that (i) simple model structures might compensate for deficiencies in spatial representativeness through parameterization and (ii) highly resolved hydrological models benefit from improved spatial modeling of rainfall.


Sign in / Sign up

Export Citation Format

Share Document