scholarly journals Metamodel Approaches in Predicting the Seismic Response of Asymmetric Buildings

2021 ◽  
Author(s):  
Philip Luke Karuthedath ◽  
Deepak Sahu ◽  
Robin Davis P

Asymmetry formed as a result of the eccentricity between the positions of Centre of Mass and Centre of Stiffness can cause undesired torsional coupling and can weaken the seismic performance of buildings and structures. This dynamic response is further affected by the randomness in material, geometric and loading properties caused as a result of uncertainties in construction and functioning. Stochastic analyses methods such as Monte Carlo Simulation have been found to accurately characterize this randomness and uncertainty, but are computationally intensive as well as expensive. This necessitates the need for alternative analyses methods that are much simpler and can fairly represent the uncertainties while preserving the similarity in results. The present investigation considers the various metamodel approaches in non-statistical stochastic analyses methods in determining the seismic response of asymmetric buildings. The study observes the efficiency of the High Dimensional Model Representation (HDMR) approach in accurately predicting the free vibration response of a reinforced concrete frame with the least number of samplings points as well as computational effort as compared to other response surface methods. For further validation, a non-linear reliability analysis was carried out at HDMR sampling points to obtain the seismic fragility of the building considered, the results of which satisfied the fragility obtained using conventional methods.

1970 ◽  
Vol 96 (6) ◽  
pp. 1246-1250
Author(s):  
James C. Anderson ◽  
Vitelmo V. Bertero ◽  
O. A. Glogau

2012 ◽  
Vol 166-169 ◽  
pp. 2138-2142
Author(s):  
Hui Min Wang ◽  
Liang Cao ◽  
Ji Yao ◽  
Zhi Liang Wang

For the complex features in the form of a flat L-shaped reinforced concrete frame structure, the three dimensional FEM model of the structure was established in this paper, and the dynamic characteristics of the structure was analyzed, the participation equivalent mass of every mode’s order was obtained. Seismic response analysis for the structure was carried out with modal decomposition spectrum method and time history analysis method, the weak layer of the structure was pointed out and the reference for the structural design was provided.


2020 ◽  
Vol 23 (10) ◽  
pp. 2003-2017
Author(s):  
Hanif Ullah ◽  
Naveed Ahmad ◽  
Muhammad Rizwan

This article presents experimental study performed on a first-of-its-kind frame fabricated using crumb rubber concrete, that is, concrete with waste rubbers (crumb) as a partial replacement of fine aggregate (sand). A 20% volume of sand was replaced by rubber crumb. Free vibration and shake-table tests were performed on 1:3 reduced scale frame models, both conventional reinforced concrete frame and crumb rubber concrete frame. The dynamic properties (i.e. frequency/time period, elastic viscous damping, and floor acceleration amplification) and seismic response parameters (i.e. ductility and response modification factors) were obtained. In addition, lateral displacement demand was correlated with peak base acceleration to derive seismic response curves. The seismic performance of crumb rubber concrete frame was compared with the conventional reinforced concrete frame in order to assess the feasibility of rubberized concrete for building constructions in areas of active seismicity. The following were concluded on the basis of experimental study: the elastic damping reduced by 12%, the initial time period increased by 6%, specific weight of concrete reduced by 6%, maximum lateral load reduced by 20%, lateral maximum story drift capacity increased by 30%, displacement ductility ratio increased by 2%, response modification factor reduced by 24%, maximum peak base acceleration resistance corresponding the incipient collapse state increased by 40%.


2012 ◽  
Vol 256-259 ◽  
pp. 2222-2228 ◽  
Author(s):  
Mohamed Draidi Bensalah ◽  
Mahmoud Bensaibi ◽  
Arezou Modaressi

According to the recent earthquakes, the asymmetric buildings suffer from severe damages caused by increased torsional response. The new seismic codes try to take into account this effect and during the modeling it is difficult to assess all the parameters that have an influence on the behavior of this kind of structures. In this work, a study on the influence of the effects of torsion on the behavior of structure is done. The proposed structures consist of an irregular 3-storey reinforced concrete frame with infinitely rigid slabs. The uncertainties of input parameters, such as seismic Arias intensity, peak ground acceleration, predominant period and output ones such as, inter-story Drift, and dynamic eccentricity upon the torsion is investigated. Using a finite element code, dynamic linear and non linear time analysis and pushover analysis have been performed, based on 116 seismic records with a magnitude varying between 6.2 and 7.7.


Sign in / Sign up

Export Citation Format

Share Document