scholarly journals The Hitchhiker’s Guide to Longitudinal Models: A Primer on Model Selection for Repeated-Measures Methods

2021 ◽  
Author(s):  
Ethan Michael McCormick ◽  
Michelle L Byrne ◽  
John Coleman Flournoy ◽  
Kathryn L. Mills ◽  
Jennifer H Pfeifer

Longitudinal data is becoming increasingly available in developmental neuroimaging. To maximize the promise of this wealth of information on how biology, behavior, and cognition change over time, there is a need to incorporate broad and rigorous training in longitudinal methods into the repertoire of developmental neuroscientists. Fortunately, these models have an incredibly rich tradition in the broader developmental sciences that we can draw from. Here, we provide a primer on longitudinal models, written in a beginner-friendly (and slightly irreverent) manner, with a particular focus on selecting among different modeling frameworks (e.g., multilevel versus latent curve models) to build the theoretical model of development a researcher wishes to test. Our aims are three-fold: 1) lay out a heuristic framework for longitudinal model selection, 2) build a repository of references that ground each model in its tradition of methodological development and practical implementation with a focus on connecting researchers to resources outside traditional neuroimaging journals, and 3) provide practical resources in the form of a codebook companion demonstrating how to fit these models. These resources together aim to enhance training for the next generation of developmental neuroscientists by providing a solid foundation for future forays into advanced modeling applications.

Methodology ◽  
2012 ◽  
Vol 8 (1) ◽  
pp. 23-38 ◽  
Author(s):  
Manuel C. Voelkle ◽  
Patrick E. McKnight

The use of latent curve models (LCMs) has increased almost exponentially during the last decade. Oftentimes, researchers regard LCM as a “new” method to analyze change with little attention paid to the fact that the technique was originally introduced as an “alternative to standard repeated measures ANOVA and first-order auto-regressive methods” (Meredith & Tisak, 1990, p. 107). In the first part of the paper, this close relationship is reviewed, and it is demonstrated how “traditional” methods, such as the repeated measures ANOVA, and MANOVA, can be formulated as LCMs. Given that latent curve modeling is essentially a large-sample technique, compared to “traditional” finite-sample approaches, the second part of the paper addresses the question to what degree the more flexible LCMs can actually replace some of the older tests by means of a Monte-Carlo simulation. In addition, a structural equation modeling alternative to Mauchly’s (1940) test of sphericity is explored. Although “traditional” methods may be expressed as special cases of more general LCMs, we found the equivalence holds only asymptotically. For practical purposes, however, no approach always outperformed the other alternatives in terms of power and type I error, so the best method to be used depends on the situation. We provide detailed recommendations of when to use which method.


Sign in / Sign up

Export Citation Format

Share Document