scholarly journals Defining functional brain networks using unsupervised density-peak clustering

2020 ◽  
Author(s):  
Ori Ossmy ◽  
Roy Mukamel

Background: Parcellating the human brain into areas based on their neural connectivity is essential for understanding the functional organization of neural networks. New Method: We adapted density-peak clustering to identify functional neural networks in individuals without the need to select seed regions. We first assess the similarity between each pair of voxels based on their activation time-courses and then aggregate the voxels based on the assumption that cluster centers are dense (have high similarity with many voxels) and are at large distance from other high-density voxels. This data-driven approach allows intuitive selection of cluster centroids in individual subjects.Results: We applied our approach on resting-state data of individual subjects. Although similar networks across subjects were identified, there was large variability in the number of networks and their anatomical distribution between subjects. Manipulating the main free parameter of the model (density level threshold) revealed a hierarchic representation in which large clusters are divided to smaller sub-clusters when decreasing the threshold.Comparison with Existing Method: To date, most connectiviy-based parcellations begin with selecting an initial seed region and are therefore limited and heavily reliant on prior theoretical knowledge. Existing methods also require many pre-defined parameters and were usually used at the group level. Conclusions: Adapting density-peak clustering algorithm to neural data has potential implications for understanding individual differences in functional networks without pre-determining the number of networks or functional/anatomical definition of a seed region. This data-driven approach may pave the way to deeper investigation of the brain structure-function relationship within individual humans.

2019 ◽  
Vol 1229 ◽  
pp. 012024 ◽  
Author(s):  
Fan Hong ◽  
Yang Jing ◽  
Hou Cun-cun ◽  
Zhang Ke-zhen ◽  
Yao Ruo-xia

2021 ◽  
Vol 12 ◽  
Author(s):  
Amel Karoui ◽  
Mostafa Bendahmane ◽  
Nejib Zemzemi

One of the essential diagnostic tools of cardiac arrhythmia is activation mapping. Noninvasive current mapping procedures include electrocardiographic imaging. It allows reconstructing heart surface potentials from measured body surface potentials. Then, activation maps are generated using the heart surface potentials. Recently, a study suggests to deploy artificial neural networks to estimate activation maps directly from body surface potential measurements. Here we carry out a comparative study between the data-driven approach DirectMap and noninvasive classic technique based on reconstructed heart surface potentials using both Finite element method combined with L1-norm regularization (FEM-L1) and the spatial adaptation of Time-delay neural networks (SATDNN-AT). In this work, we assess the performance of the three approaches using a synthetic single paced-rhythm dataset generated on the atria surface. The results show that data-driven approach DirectMap quantitatively outperforms the two other methods. In fact, we observe an absolute activation time error and a correlation coefficient, respectively, equal to 7.20 ms, 93.2% using DirectMap, 14.60 ms, 76.2% using FEM-L1 and 13.58 ms, 79.6% using SATDNN-AT. In addition, results show that data-driven approaches (DirectMap and SATDNN-AT) are strongly robust against additive gaussian noise compared to FEM-L1.


Author(s):  
Xiaoyu Qin ◽  
Kai Ming Ting ◽  
Ye Zhu ◽  
Vincent CS Lee

A recent proposal of data dependent similarity called Isolation Kernel/Similarity has enabled SVM to produce better classification accuracy. We identify shortcomings of using a tree method to implement Isolation Similarity; and propose a nearest neighbour method instead. We formally prove the characteristic of Isolation Similarity with the use of the proposed method. The impact of Isolation Similarity on densitybased clustering is studied here. We show for the first time that the clustering performance of the classic density-based clustering algorithm DBSCAN can be significantly uplifted to surpass that of the recent density-peak clustering algorithm DP. This is achieved by simply replacing the distance measure with the proposed nearest-neighbour-induced Isolation Similarity in DBSCAN, leaving the rest of the procedure unchanged. A new type of clusters called mass-connected clusters is formally defined. We show that DBSCAN, which detects density-connected clusters, becomes one which detects mass-connected clusters, when the distance measure is replaced with the proposed similarity. We also provide the condition under which mass-connected clusters can be detected, while density-connected clusters cannot.


Author(s):  
Liping Sun ◽  
Shang Ci ◽  
Xiaoqing Liu ◽  
Xiaoyao Zheng ◽  
Qingying Yu ◽  
...  

Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1168
Author(s):  
Jun-Lin Lin ◽  
Jen-Chieh Kuo ◽  
Hsing-Wang Chuang

Density peak clustering (DPC) is a density-based clustering method that has attracted much attention in the academic community. DPC works by first searching density peaks in the dataset, and then assigning each data point to the same cluster as its nearest higher-density point. One problem with DPC is the determination of the density peaks, where poor selection of the density peaks could yield poor clustering results. Another problem with DPC is its cluster assignment strategy, which often makes incorrect cluster assignments for data points that are far from their nearest higher-density points. This study modifies DPC and proposes a new clustering algorithm to resolve the above problems. The proposed algorithm uses the radius of the neighborhood to automatically select a set of the likely density peaks, which are far from their nearest higher-density points. Using the potential density peaks as the density peaks, it then applies DPC to yield the preliminary clustering results. Finally, it uses single-linkage clustering on the preliminary clustering results to reduce the number of clusters, if necessary. The proposed algorithm avoids the cluster assignment problem in DPC because the cluster assignments for the potential density peaks are based on single-linkage clustering, not based on DPC. Our performance study shows that the proposed algorithm outperforms DPC for datasets with irregularly shaped clusters.


2021 ◽  
Author(s):  
Yizhang Wang ◽  
Di Wang ◽  
You Zhou ◽  
Chai Quek ◽  
Xiaofeng Zhang

<div>Clustering is an important unsupervised knowledge acquisition method, which divides the unlabeled data into different groups \cite{atilgan2021efficient,d2021automatic}. Different clustering algorithms make different assumptions on the cluster formation, thus, most clustering algorithms are able to well handle at least one particular type of data distribution but may not well handle the other types of distributions. For example, K-means identifies convex clusters well \cite{bai2017fast}, and DBSCAN is able to find clusters with similar densities \cite{DBSCAN}. </div><div>Therefore, most clustering methods may not work well on data distribution patterns that are different from the assumptions being made and on a mixture of different distribution patterns. Taking DBSCAN as an example, it is sensitive to the loosely connected points between dense natural clusters as illustrated in Figure~\ref{figconnect}. The density of the connected points shown in Figure~\ref{figconnect} is different from the natural clusters on both ends, however, DBSCAN with fixed global parameter values may wrongly assign these connected points and consider all the data points in Figure~\ref{figconnect} as one big cluster.</div>


2018 ◽  
Vol 13 (3) ◽  
pp. 168-179
Author(s):  
Anbo Qiu ◽  
◽  
Zhuowei Wang

Sign in / Sign up

Export Citation Format

Share Document