scholarly journals Overnight fasting affects avoidance learning and relief

2021 ◽  
Author(s):  
Silvia Papalini ◽  
Neefs Laura ◽  
Tom Beckers ◽  
Lukas Van Oudenhove ◽  
Bram Vervliet

Prolonged fasting influences threat and reward processing, two fundamental systems underpinning adaptive behaviors. In animals, overnight fasting sensitizes the mesolimbic-dopaminergic activity governing avoidance, reward, and fear-extinction learning. Despite evidence that overnight fasting may also affect reward and fear learning in humans, effects on human avoidance learning have not been studied yet. Here, we examined the effects of 16h-overnight fasting on instrumental avoidance and relief from threat omission. To this end, 50 healthy women were randomly assigned to a fasting (N=25) or a re-feeding group (N=25) and performed an Avoidance-Relief Task. We found that fasting decreases unnecessary avoidance during signaled safety; this effect was mediated via a reduction in relief pleasantness during signaled absence of threat. A fasting-induced reduction in relief was also found during fear extinction learning. We conclude that fasting optimizes avoidance and safety learning. Future studies should test whether these effects also hold for anxious individuals.

2021 ◽  
Vol 13 ◽  
Author(s):  
Christophe J. Dubois ◽  
Siqiong June Liu

The cerebellum is critically involved in the formation of associative fear memory and in subsequent extinction learning. Fear conditioning is associated with a long-term potentiation at both excitatory and inhibitory synapses onto Purkinje cells. We therefore tested whether fear conditioning unmasks novel forms of synaptic plasticity, which enable subsequent extinction learning to reset cerebellar circuitry. We found that fear learning enhanced GABA release from molecular layer interneurons and this was reversed after fear extinction learning. Importantly an extinction-like stimulation of parallel fibers after fear learning is sufficient to induce a lasting decrease in inhibitory transmission (I-LTDstim) in the cerebellar cortex, a form of plasticity that is absent in naïve animals. While NMDA (N-methyl-D-aspartate) receptors are required for the formation and extinction of associative memory, the role of GluN2D, one of the four major NMDA receptor subunits, in learning and memory has not been determined. We found that fear conditioning elevates spontaneous GABA release in GluN2D KO as shown in WT mice. Deletion of GluN2D, however, abolished the I-LTDstim induced by parallel fiber stimulation after learning. At the behavioral level, genetic deletion of GluN2D subunits did not affect associative learning and memory retention, but impaired subsequent fear extinction learning. D-cycloserine, a partial NMDA receptor (NMDAR) agonist, failed to rescue extinction learning in mutant mice. Our results identify GluN2D as a critical NMDAR subunit for extinction learning and reveal a form of GluN2D-dependent metaplasticity that is associated with extinction in the cerebellum.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jennifer Spohrs ◽  
Martin Ulrich ◽  
Georg Grön ◽  
Michael Prost ◽  
Paul Lukas Plener ◽  
...  

AbstractAnxiety- and trauma-related disorders are severe illnesses with high prevalence. Current treatment options leave room for improvement and the endocannabinoid system (ECS) has become a key target in psychopharmacological research. Rodent models suggest an anxiolytic effect of endocannabinoids and demonstrated that the ECS is involved in the modulation of fear learning and aversive memory consolidation. So far, one prominent target was inhibition of fatty acid amino hydrolase (FAAH), the degrading enzyme of the endocannabinoid anandamide (AEA). Research in humans remains scarce, but genetic studies have found that the single-nucleotide polymorphism (SNP) FAAH C385A (rs324420) is associated with lower catabolic performance of FAAH and increased levels of AEA. Translational research on the ECS in fear learning processes is rare, yet crucial to understand the mechanisms involved. To address this lack of research, we designed a fear conditioning, extinction learning paradigm with 51 healthy, male humans who underwent functional magnetic resonance imaging (fMRI) before analysing baseline and task-related changes of AEA, as well as the FAAH polymorphism (rs324420). The results indicate higher AEA levels in AC-heterozygotes than in CC-individuals (SNP rs324420), but no difference between the groups during extinction learning. However, neural activation of the anterior cingulate cortex and anterior insular cortex during extinction learning correlated positively with AEA baseline levels, and task-related changes in AEA were found particularly during fear extinction, with a modulatory effect on neural activation related to extinction learning. Results indicate a putative role for AEA in fear extinction learning. Pre-treatment with AEA-enhancing drugs could promote extinction learning during psychotherapeutic interventions.


Author(s):  
Alexandra Wille ◽  
Verena Maurer ◽  
Paolo Piatti ◽  
Nigel Whittle ◽  
Dietmar Rieder ◽  
...  

2021 ◽  
Vol 131 ◽  
pp. 1264-1274
Author(s):  
Madelyne A. Bisby ◽  
A.A. Stylianakis ◽  
K.D. Baker ◽  
R. Richardson

2013 ◽  
Vol 38 (6) ◽  
pp. 930-937 ◽  
Author(s):  
Megan C Riddle ◽  
Morgan C McKenna ◽  
Yone J Yoon ◽  
Siobhan S Pattwell ◽  
Patricia Mae G Santos ◽  
...  

2021 ◽  
Vol 53 (8S) ◽  
pp. 303-304
Author(s):  
Kevin M. Crombie ◽  
Anneliis Sartin-Tarm ◽  
Kyrie Sellnow ◽  
Rachel Ahrenholtz ◽  
Sierra Lee ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
pp. 1568132 ◽  
Author(s):  
Pierre-François Rousseau ◽  
Myriam El Khoury-Malhame ◽  
Emmanuelle Reynaud ◽  
Sarah Boukezzi ◽  
Aïda Cancel ◽  
...  

Author(s):  
Rinki Saha ◽  
Martin Kriebel ◽  
Rachel Anunu ◽  
Hansjuergen Volkmer ◽  
Gal Richter‐Levin

Sign in / Sign up

Export Citation Format

Share Document