scholarly journals Individuals use different spatial reference frames on different axes: Evidence from indigenous Amazonians

2021 ◽  
Author(s):  
Benjamin Pitt ◽  
Alexandra Carstensen ◽  
Isabelle Boni ◽  
Steven T. Piantadosi ◽  
Edward Gibson

The physical properties of space may be universal, but the way people conceptualize space is variable. In some groups, people tend to use egocentric space (e.g. left, right) to encode the locations of objects, while in other groups, people encode the same spatial scene using allocentric space (e.g. upriver, downriver). These different spatial frames of reference (FoRs) characterize the way people talk about spatial relations and the way they think about them, even when they are not using language. Although spatial language and spatial reasoning tend to covary, the root causes of this variation are unclear. Here we propose that variation in FoR use partly reflects the discriminability of the relevant spatial continua. In an initial test of this proposal in a group of indigenous Bolivians, we compared FoR use across spatial axes that are known to differ in discriminability. In both verbal and nonverbal tests, participants spontaneously used different FoRs on different spatial axes: On the lateral axis, where egocentric (left-right) discrimination is difficult, their spatial behavior and language was predominantly allocentric; on the sagittal axis, where egocentric (front-back) discrimination is relatively easy, they were predominantly egocentric. These findings challenge the claim that each language group can be characterized by a predominant spatial frame of reference. Rather, both spatial memory and language can differ categorically across axes, even within the same individuals. We suggest that differences in spatial discrimination can explain differences in both spatial memory and language within and across human groups.

2021 ◽  
Author(s):  
Benjamin Pitt ◽  
Alexandra Carstensen ◽  
Edward Gibson ◽  
Steven T. Piantadosi

Spatial language and cognition vary across contexts. In some groups, people tend to use egocentric space (e.g. left, right) to encode the locations of objects, while in other groups, people use allocentric space (e.g. upriver, downriver) to describe the same spatial scene. These different spatial Frames of Reference (FoRs) characterize both the way people talk about spatial relations and the way they think about them, even when they are not using language. These patterns of spatial language and spatial thinking tend to covary, but the root causes of this variation are unclear. Here we propose that this variation in FoR use reflects variation in the spatial discriminability of the relevant spatial continua. In an initial test of this proposal, we compared FoR use across spatial axes that are known to differ in discriminability. In two non-verbal tests, a group of indigenous Bolivians used different FoRs on different spatial axes; on the lateral axis, where egocentric (left-right) discrimination is difficult, their behavior was predominantly allocentric; on the sagittal axis, where egocentric (front-back) discrimination is relatively easy, their behavior was predominantly egocentric. These findings support the spatial discriminability hypothesis, which may explain variation in spatial concepts not only across axes, but also across groups, between individuals, and over development.


2008 ◽  
Vol 20 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Jeffrey M. Zacks

Mental rotation is a hypothesized imagery process that has inspired controversy regarding the substrate of human spatial reasoning. Two central questions about mental rotation remain: Does mental rotation depend on analog spatial representations, and does mental rotation depend on motor simulation? A review and meta-analysis of neuroimaging studies help answer these questions. Mental rotation is accompanied by increased activity in the intraparietal sulcus and adjacent regions. These areas contain spatially mapped representations, and activity in these areas is modulated by parametric manipulations of mental rotation tasks, supporting the view that mental rotation depends on analog representations. Mental rotation also is accompanied by activity in the medial superior precentral cortex, particularly under conditions that favor motor simulation, supporting the view that mental rotation depends on motor simulation in some situations. The relationship between mental rotation and motor simulation can be understood in terms of how these two processes update spatial reference frames.


Author(s):  
Steven M. Weisberg ◽  
Anjan Chatterjee

Abstract Background Reference frames ground spatial communication by mapping ambiguous language (for example, navigation: “to the left”) to properties of the speaker (using a Relative reference frame: “to my left”) or the world (Absolute reference frame: “to the north”). People’s preferences for reference frame vary depending on factors like their culture, the specific task in which they are engaged, and differences among individuals. Although most people are proficient with both reference frames, it is unknown whether preference for reference frames is stable within people or varies based on the specific spatial domain. These alternatives are difficult to adjudicate because navigation is one of few spatial domains that can be naturally solved using multiple reference frames. That is, while spatial navigation directions can be specified using Absolute or Relative reference frames (“go north” vs “go left”), other spatial domains predominantly use Relative reference frames. Here, we used two domains to test the stability of reference frame preference: one based on navigating a four-way intersection; and the other based on the sport of ultimate frisbee. We recruited 58 ultimate frisbee players to complete an online experiment. We measured reaction time and accuracy while participants solved spatial problems in each domain using verbal prompts containing either Relative or Absolute reference frames. Details of the task in both domains were kept as similar as possible while remaining ecologically plausible so that reference frame preference could emerge. Results We pre-registered a prediction that participants would be faster using their preferred reference frame type and that this advantage would correlate across domains; we did not find such a correlation. Instead, the data reveal that people use distinct reference frames in each domain. Conclusion This experiment reveals that spatial reference frame types are not stable and may be differentially suited to specific domains. This finding has broad implications for communicating spatial information by offering an important consideration for how spatial reference frames are used in communication: task constraints may affect reference frame choice as much as individual factors or culture.


2010 ◽  
Vol 10 (7) ◽  
pp. 1063-1063
Author(s):  
J. C. Dessing ◽  
J. D. Crawford ◽  
W. P. Medendorp

With “Spatial Reference Frames” we refer to systems of coordinates by which the central nervous system encodes the relative positions of objects in space, including that of the body itself. A reference system is a way of representing the positions of the subjects / objects in space. The spatial position of an object can be represented in the brain with respect to different classes of reference points, which may be related or not to the position of the subject. In a nutshell, we can say that there are two types of transformations of space imagery: the allocentric spatial transformations, that involve a system of representation from object to object and encode information about the location of an object or its parts in relation to other objects, and egocentric spatial transformations that involve a system of subject-object representation. The human being switches from one code to another, depending on the contingent requirements, giving preference to one or another system according to a set of heterogeneous factors. The gender difference (male / female), for example, plays a key role. Even the individual cognitive strategies make use of different representations in a significantly different way. Manipulation of spatial reference systems constitute a “transnosographic trait” in various neurological and psychiatric disorders. Each of these diseases (autism, schizophrenia, epilepsy, spatial anxiety, Parkinson) reaches some of the structures involved in the manipulation of referential of different spaces. The chapter illustrates Piaget's study on the representation of space in the child and the use of different spatial coding systems, and provides a brief overview of the scientific debate following the Piagetian position.


Sign in / Sign up

Export Citation Format

Share Document