lateral axis
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 23)

H-INDEX

12
(FIVE YEARS 2)

Coatings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 14
Author(s):  
Guiling Hu ◽  
Wenyang Han ◽  
Jincheng Wei ◽  
Deqing Wang ◽  
Xiaomeng Zhang ◽  
...  

To study the in-situ response and performance of asphalt pavement, instrumenting pavement with a variety of sensors has become one of the most important tools in the field or accelerated load facilities. In the dynamic response collection process, engineers are more concerned with the load position strain of the pavement structure due to wheel wander. This paper proposes a method to obtain the load position and the strain at the load position when there is no lateral-axis positioning system based on multilayer elastic theory. The test section was paved in the field with installed strain sensors to verify and apply the proposed method. The verification results showed that both the calculated load position and load position strain matched the measured values with an absolute difference range of 5–60 mm, 0.5–2.5 με, respectively. The application results showed that the strain at the load position calculated by the proposed method had a good correlation with the temperature, as expected.


2021 ◽  
pp. 1-18
Author(s):  
Daniel Alcaraz Carrión ◽  
Javier Valenzuela

Abstract There is a distinction between languages that use the duration is length metaphor, like English (e.g., long time), and languages like Spanish that conceptualise time using the duration is quantity metaphor (e.g., much time). The present study examines the use of both metaphors, exploring their multimodal behaviour in Spanish speakers. We analyse co-speech gesture patterns in the TV news setting, using data from the NewsScape Library, that co-occur with expressions that trigger the duration is quantity construal (e.g., durante todo ‘during the whole’) and the duration is length construal in the from X to Y construction (e.g., desde el principio hasta el final ‘from beginning to end’). Results show that both metaphors tend to co-occur with a semantic gesture, with a preference for the lateral axis, as reported in previous studies. However, our data also indicate that the direction of the gesture changes depending on the construal. The duration is quantity metaphor tends to be performed with gestures with an outwards direction, in contrast with the duration is length construal, which employ a left-to-right directionality. These differences in gesture realisation point to the existence of different construals for the concept of temporal duration.


Phytotaxa ◽  
2021 ◽  
Vol 522 (1) ◽  
pp. 15-26
Author(s):  
KUN-PENG FANG ◽  
FANG-RU NAN ◽  
JIA FENG ◽  
QI LIU ◽  
XU-DONG LIU ◽  
...  

Caloglossa (Ceramiales, Rhodophyta) is a globally distributed euryhaline red macroalgal genus. However, only a few Caloglossa species have been documented in permanent freshwater habitats. Here, a new Caloglossa species, Caloglossa fonticola sp. nov., is described and illustrated from an underground spring in Bama County, Guangxi, China, based on morphological observations and molecular phylogenetic analysis. The new species is morphologically distinguishable from other species in the genus by a unique combination of character states, including thallus internodal blades linear, hardly or slightly constricted at nodes, adventitious branches and endogenous branches both absent, and unicellular rhizoids forming from clusters of wing cells arising from the first three axial cells of the main axis and lateral axis. Phylogenetic analysis based on rbcL and LSU rRNA DNA sequences indicated that Caloglossa fonticola was nested in a well-supported clade with Caloglossa bengalensis (Bootstrap supports for ML/posterior probabilities for BI: rbcL-98/1.00, LSU-100/1.00), with high sequence divergence between these two species (8.2–8.4% for rbcL and 3.2% for LSU), supporting its specific status. This is the first species of the genus Caloglossa reported in spring water habitats. The description of C. fonticola expands the known diversity of Caloglossa.


2021 ◽  
Author(s):  
Benjamin Pitt ◽  
Alexandra Carstensen ◽  
Isabelle Boni ◽  
Steven T. Piantadosi ◽  
Edward Gibson

The physical properties of space may be universal, but the way people conceptualize space is variable. In some groups, people tend to use egocentric space (e.g. left, right) to encode the locations of objects, while in other groups, people encode the same spatial scene using allocentric space (e.g. upriver, downriver). These different spatial frames of reference (FoRs) characterize the way people talk about spatial relations and the way they think about them, even when they are not using language. Although spatial language and spatial reasoning tend to covary, the root causes of this variation are unclear. Here we propose that variation in FoR use partly reflects the discriminability of the relevant spatial continua. In an initial test of this proposal in a group of indigenous Bolivians, we compared FoR use across spatial axes that are known to differ in discriminability. In both verbal and nonverbal tests, participants spontaneously used different FoRs on different spatial axes: On the lateral axis, where egocentric (left-right) discrimination is difficult, their spatial behavior and language was predominantly allocentric; on the sagittal axis, where egocentric (front-back) discrimination is relatively easy, they were predominantly egocentric. These findings challenge the claim that each language group can be characterized by a predominant spatial frame of reference. Rather, both spatial memory and language can differ categorically across axes, even within the same individuals. We suggest that differences in spatial discrimination can explain differences in both spatial memory and language within and across human groups.


2021 ◽  
Author(s):  
Daniel Alcaraz Carrion ◽  
Javier Valenzuela

In this paper, we look at co-speech gestures when using a Time Unit +come/go construction. We analise 326 gestures in terms axis, direction of the movement, direction in relation to the speaker and gesture-speech congruency. We conclude that gestures performed with these verbs are adapted to the lateral axis. We hypothesise that factors such as the frequency of the linguistic expression, the level of spatial information contained in the linguistic structure, and the type of temporal frame of reference employed by time metaphors may condition several gesture features such as frequency, congruency and direction.


Author(s):  
Clara Scheer ◽  
Lisa Horn ◽  
Petra Jansen

AbstractMoving in synchrony with one another is a fundamental mechanism that maintains human social bonds. Yet, not all individuals are equally likely to coordinate their behaviors with others. The degree of interpersonal coordination is greatly influenced by pre-existing characteristics of the interacting partners, like the cultural homogeneity of a group, shared goals, and the likability of the other person. Considering that most research questions necessitate an experimental set-up without such uncontrolled biases, we created a novel, unbiased paradigm: a human-avatar body sway synchronization paradigm. Participants’ body sway was measured by a force plate while being exposed to a medio-laterally moving avatar. Forty-nine participants were tested in a social condition (motionless vs. moving avatar) and a non-social control condition (motionless vs. moving column). The results revealed that participants increased their body sway on their medio-lateral axis while the avatar was moving. The participants did not increase their body sway in the non-social control condition, indicating that the participant’s movement was not simply caused by a basal motion perception process. The current study builds a methodological fundament that can help to reduce biases due to pre-existing rapport between interaction partners and serves as a valuable experimental paradigm for future synchrony studies.


2021 ◽  
Author(s):  
Benjamin Pitt ◽  
Alexandra Carstensen ◽  
Edward Gibson ◽  
Steven T. Piantadosi

Spatial language and cognition vary across contexts. In some groups, people tend to use egocentric space (e.g. left, right) to encode the locations of objects, while in other groups, people use allocentric space (e.g. upriver, downriver) to describe the same spatial scene. These different spatial Frames of Reference (FoRs) characterize both the way people talk about spatial relations and the way they think about them, even when they are not using language. These patterns of spatial language and spatial thinking tend to covary, but the root causes of this variation are unclear. Here we propose that this variation in FoR use reflects variation in the spatial discriminability of the relevant spatial continua. In an initial test of this proposal, we compared FoR use across spatial axes that are known to differ in discriminability. In two non-verbal tests, a group of indigenous Bolivians used different FoRs on different spatial axes; on the lateral axis, where egocentric (left-right) discrimination is difficult, their behavior was predominantly allocentric; on the sagittal axis, where egocentric (front-back) discrimination is relatively easy, their behavior was predominantly egocentric. These findings support the spatial discriminability hypothesis, which may explain variation in spatial concepts not only across axes, but also across groups, between individuals, and over development.


2021 ◽  
Vol 71 (2) ◽  
pp. 153-161
Author(s):  
M. Jayalakshmi ◽  
Vijay V. Patel ◽  
Giresk K. Singh

The implementation of interconnect gain from aileron to rudder surface on the majority of the aircraftis to decrease sideslip which is generated because of adverse yaw with the movement of control stick in lateral axis and also enhances the turning rate performance.The Aileron to Rudder Interconnect (ARI)involves significant part to decouple the Dutch roll oscillations from roll rate response to aileron command. ARI is feed-forward gain whichis susceptible to aircraft system uncertainty. Incorrect ARI gain can lead to side slip buildup which can cause aircraft to depart in case of fault scenarios. Four systematic ARI design methods are proposed. One of the proposed methods which use the norm of ARI transfer function at roll damping frequency is suitable for online reconfiguration of control law. The reconfiguration of ARI gain is illustratedwith the simulation responses of fault scenario case of aileron surface damage.


Author(s):  
Feyyaz Guner ◽  
David G. Miller ◽  
J. V. R. Prasad

During the development of the Boeing CH-47D helicopter flight simulation model, test pilots reported mismatch between the flight simulator results and flight test data of the hover and low-speed lateral axis handling qualities, especially for the case without the automatic flight control system. In addressing the observed mismatch, the gains of the longitudinal and lateral components of the inflow model were selected to be significantly higher than their theoretical values. In this study, a detailed understanding of the rotor-to-rotor inflow interference is pursued using a recently developed multi-rotor pressure potential superposition inflow model. It is shown that the coupling between the inflow gradients of individual rotors exists in a tandem rotor, which can be approximated by using higher values for the longitudinal and lateral inflow gains of individual rotors. Further, it is shown that the need for empirical tuning of aerodynamic hub moment influence factors can be eliminated by properly accounting for the rotor-to-rotor interference in the inflow model.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243753
Author(s):  
Denise Drozd ◽  
Harald Wolf ◽  
Torben Stemme

The pectines of scorpions are comb-like structures, located ventrally behind the fourth walking legs and consisting of variable numbers of teeth, or pegs, which contain thousands of bimodal peg sensillae. The associated neuropils are situated ventrally in the synganglion, extending between the second and fourth walking leg neuromeres. While the general morphology is consistent among scorpions, taxon-specific differences in pecten and neuropil structure remain elusive but are crucial for a better understanding of chemosensory processing. We analysed two scorpion species (Mesobuthus eupeus and Heterometrus petersii) regarding their pecten neuropil anatomy and the respective peg afferent innervation with anterograde and lipophilic tracing experiments, combined with immunohistochemistry and confocal laser-scanning microscopy. The pecten neuropils consisted of three subcompartments: a posterior pecten neuropil, an anterior pecten neuropil and a hitherto unknown accessory pecten neuropil. These subregions exhibited taxon-specific variations with regard to compartmentalisation and structure. Most notable were structural differences in the anterior pecten neuropils that ranged from ovoid shape and strong fragmentation in Heterometrus petersii to elongated shape with little compartmentalisation in Mesobuthus eupeus. Labelling the afferents of distinct pegs revealed a topographic organisation of the bimodal projections along a medio-lateral axis. At the same time, all subregions along the posterior-anterior axis were innervated by a single peg’s afferents. The somatotopic projection pattern of bimodal sensillae appears to be common among arachnids, including scorpions. This includes the structure and organisation of the respective neuropils and the somatotopic projection patterns of chemosensory afferents. Nonetheless, the scorpion pecten pathway exhibits unique features, e.g. glomerular compartmentalisation superimposed on somatotopy, that are assumed to allow high resolution of substrate-borne chemical gradients.


Sign in / Sign up

Export Citation Format

Share Document