scholarly journals Optimization of PV Power Capacity of 10 KWp Capacity Based on P&O Algorithm and Boost Converter

Author(s):  
Antonius Rajagukguk ◽  
Maryani Aritonang

Using solar panels as a power plant can reduce the dependence of fuel oil. To work always on maximum power points (MPP), Photovoltaic (PV) requires optimization method. Therefore, the authors are interested in discussing the optimization method of the PV array model using Maximum Power Point Traking (MPPT) with the Perturbation & Observation (P & O) Algorithm and Boost Converter. In this case, PV capacity will be simulated on 10 kWp. That PV consists of 4 strings, which is each strings consist of 10 PV modules. The output of PV modules will be forwarded to the Boost Converter circuit. Boost Converter want is controlled by P&O Algorithm. The voltage and current generated from the PV array modeling will be used by the P&O Algorithm as a reference. The function of P&O Algorithm is to track the Maximum Power Point (MPP) of the PV model. The result of tracking power by P&O Algorithm will be forwarded to Pulse Width Modulation (PWM) circuit as a duty cycle generator. Duty cycle signal will be forwarded to the switching tool contained in the converter circuit. By that control system, PV model expected has maximum power according to the voltage. Based on the results of power test by 1000 W/m2 radiation, maximum power obtained is equal to 9967 Wp with 99.6 % efficiency at a voltage level of 400 volt. Therefore,it can be concluded that the design of the PV Array System using P&O Algorithm and the Boost Converter can work well.

J ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 32-53 ◽  
Author(s):  
Mohammed Alkahtani ◽  
Zuyu Wu ◽  
Colin Sokol Kuka ◽  
Muflah S. Alahammad ◽  
Kai Ni

Photovoltaic (PV) module working conditions lack consistency and PV array power outputs fluctuate due to the non-uniform impact that aging has on various PV modules in a PV array. No assessment has been conducted on the energy potential of a non-uniform PV array, despite the fact that the maximum power point (MPP) can be tracked by global maximum power point tracking (GMPPT). Therefore, the present work undertakes such an assessment by devising an algorithm to optimise the PV array electrical structure as the PV modules undergo aging in a non-uniform way. To enable PV arrays with non-uniform aging to produce as much power as possible and to make maintenance more cost-effective, the work puts forward a novel approach for reconfiguring PV arrays, where the PV modules are repositioned by retaining the aged PV modules. By this approach, the selection of the best reconfiguration topology necessitates the information on the electrical parameters associated with the PV modules in an array. Furthermore, the non-uniform aging of the PV modules can engender an incompatibility effect, which can be diminished in the proposed algorithm through iterative sorting of the modules in a hierarchical pattern. To determine how effective the method is for PV arrays with non-uniform aging and of different sizes, such as 3 × 4, 5 × 8 and 7 × 8 arrays, computer simulation and analysis have been conducted, with findings indicating that, irrespective of dimensions, PV arrays with non-uniform aging can have improved power yield.


2020 ◽  
Vol 143 (4) ◽  
Author(s):  
Ranganai T. Moyo ◽  
Pavel Y. Tabakov ◽  
Sibusiso Moyo

Abstract Maximum power point tracking (MPPT) controllers play an important role in improving the efficiency of solar photovoltaic (SPV) modules. These controllers achieve maximum power transfer from PV modules through impedance matching between the PV modules and the load connected. Several MPPT techniques have been proposed for searching the optimal matching between the PV module and load resistance. These techniques vary in complexity, tracking speed, cost, accuracy, sensor, and hardware requirements. This paper presents the design and modeling of the adaptive neuro-fuzzy inference system (ANFIS)-based MPPT controller. The design consists of a PV module, ANFIS reference model, DC–DC boost converter, and the fuzzy logic (FL) power controller for generating the control signal for the converter. The performance of the proposed ANFIS-based MPPT controller is evaluated through simulations in the matlab/simulink environment. The simulation results demonstrated the effectiveness of the proposed technique since the controller can extract the maximum available power for both steady-state and varying weather conditions. Moreover, a comparative study between the proposed ANFIS-based MPPT controller and the commonly used, perturbation and observation (P&O) MPPT technique is presented. The simulation results reveal that the proposed ANFIS-based MPPT controller is more efficient than the P&O method since it shows a better dynamic response with few oscillations about the maximum power point (MPP). In addition, the proposed FL power controller for generating the duty cycle of the DC–DC boost converter also gave satisfying results for MPPT.


2021 ◽  
pp. 1-10
Author(s):  
Imran Pervez ◽  
Adil Sarwar ◽  
Afroz Alam ◽  
Mohammad ◽  
Ripon K. Chakrabortty ◽  
...  

Due to its clean and abundant availability, solar energy is popular as a source from which to generate electricity. Solar photovoltaic (PV) technology converts sunlight incident on the solar PV panel or array directly into non-linear DC electricity. However, the non-linear nature of the solar panels’ power needs to be tracked for its efficient utilization. The problem of non-linearity becomes more prominent when the solar PV array is shaded, even leading to high power losses and concentrated heating in some areas (hotspot condition) of the PV array. Bypass diodes used to eliminate the shading effect cause multiple peaks of power on the power versus voltage (P-V) curve and make the tracking problem quite complex. Conventional algorithms to track the optimal power point cannot search the complete P-V curve and often become trapped in local optima. More recently, metaheuristic algorithms have been employed for maximum power point tracking. Being stochastic, these algorithms explore the complete search area, thereby eliminating any chance of becoming trapped stuck in local optima. This paper proposes a hybridized version of two metaheuristic algorithms, Radial Movement Optimization and teaching-learning based optimization (RMOTLBO). The algorithm has been discussed in detail and applied to multiple shading patterns in a solar PV generation system. It successfully tracks the maximum power point (MPP) in a lesser amount of time and lesser fluctuations.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 483
Author(s):  
Novie Ayub Windarko ◽  
Muhammad Nizar Habibi ◽  
Bambang Sumantri ◽  
Eka Prasetyono ◽  
Moh. Zaenal Efendi ◽  
...  

During its operation, a photovoltaic system may encounter many practical issues such as receiving uniform or non-uniform irradiance caused mainly by partial shading. Under uniform irradiance a photovoltaic panel has a single maximum power point. Conversely under non-uniform irradiance, a photovoltaic panel has several local maximum power points and a single global maximum power point. To maximize energy production, a maximum power point tracker algorithm is commonly implemented to achieve the maximum power operating point of the photovoltaic panel. However, the performance of the algorithm will depend on operating conditions such as variation in irradiance. Presently, most of existing maximum power point tracker algorithms work only in a single condition: either uniform or non-uniform irradiance. This paper proposes a new maximum power point tracker algorithm for photovoltaic power generation that is designed to work under uniform and partial shading irradiance conditions. Additionally, the proposed maximum power point tracker algorithm aims to provide: (1) a simple math algorithm to reduce computational load, (2) fast tracking by evaluating progress for every single executed duty cycle, (3) without random steps to prevent jumping duty cycle, and (4) smooth variable steps to increase accuracy. The performances of the proposed algorithm are evaluated by three conditions of uniform and partial shading irradiance where a targeted maximum power point is located: (1) far from, (2) near, and (3) laid between initial positions of particles. The simulation shows that the proposed algorithm successfully tracks the maximum power point by resulting in similar power values in those three conditions. The proposed algorithm could handle the partial shading condition by avoiding the local maxima power point and finding the global maxima power point. Comparisons of the proposed algorithm and other well-known algorithms such as differential evolution, firefly, particle swarm optimization, and grey wolf optimization are provided to show the superiority of the proposed algorithm. The results show the proposed algorithm has better performance by providing faster tracking, faster settling time, higher accuracy, minimum oscillation and jumping duty cycle, and higher energy harvesting.


Author(s):  
Mohammad Serhan ◽  
Sami H. Karaki ◽  
Lena R. Chaar

This paper presents a maximum power point (MPP) hardware tracking system based on an adaptive Perturb and Observe (PAO) algorithm. Under a given solar and temperature condition the search for the MPP starts with a large perturbation step. When a drop in the delivered power is detected, the size of the step is halved and the direction of duty cycle change is reversed. Eventually the MPP will be tracked by small perturbation step (e.g. 1/ 255). When tracking at a maximum and a sudden change occurs in the atmospheric conditions, the system will try to reach the new MPP, with an adaptive perturbation step size that is allowed to increase after 4 consecutive increases or decrease in the duty cycle leading to increase in power delivery. This adaptive PAO algorithm forces the system to respond fairly quickly to any changes in the solar radiation or temperature level irrespective of where the previous operating point MPP was and without deteriorating the tracking efficiency. A tracking efficiency of about 96% was achieved using a very simple controller.


Author(s):  
Norazlan Hashim ◽  
Zainal Salam ◽  
Dalina Johari ◽  
Nik Fasdi Nik Ismail

<span>The main components of a Stand-Alone Photovoltaic (SAPV) system consists of PV array, DC-DC converter, load and the maximum power point tracking (MPPT) control algorithm. MPPT algorithm was used for extracting maximum available power from PV module under a particular environmental condition by controlling the duty ratio of DC-DC converter. Based on maximum power transfer theorem, by changing the duty cycle, the load resistance as seen by the source is varied and matched with the internal resistance of PV module at maximum power point (MPP) so as to transfer the maximum power. Under sudden changes in solar irradiance, the selection of MPPT algorithm’s sampling time (T<sub>S_MPPT</sub>) is very much depends on two main components of the converter circuit namely; inductor and capacitor. As the value of these components increases, the settling time of the transient response for PV voltage and current will also increase linearly. Consequently, T<sub>S_MPPT </sub>needs to be increased for accurate MPPT and therefore reduce the tracking speed. This work presents a design considerations of DC-DC Boost Converter used in SAPV system for fast and accurate MPPT algorithm. The conventional Hill Climbing (HC) algorithm has been applied to track the MPP when subjected to sudden changes in solar irradiance. By selecting the optimum value of the converter circuit components, a fast and accurate MPPT especially during sudden changes in irradiance has been realized.</span>


Author(s):  
Abdullah Assegaf ◽  
Dedi Aming ◽  
Febri Alvianto

Efisiensi konversi energi yang rendah menjadi masalah utama padaupembangkit listrikutenagausurya (PLTS). Makalah ini membahas tentang implementasi metode maximum power point tracking (MPPT) dengan algoritma incremental conductance (IC) pada sistem panel surya dengan kapasitas 100 Wattpeak (Wp) yang bertujuan untuk mendapatkan daya keluaran yang paling optimal dari panel surya. Sistem dibangun dengan menggunakan konverter DC/DC buck-boost dan mikrokontroler sebagai pengolah algoritma MPPT serta pusat kendali sistem. Mikrokontroler akan mengontrol duty cycle dari konverter buck-boost dan memastikan bahwa panel surya selalu beroperasi pada kondisi titik daya maksimum dengan menggunakan algoritma IC. Hasil pengujian menunjukkan bahwa penggunaan metode MPPT dengan algoritma IC pada sistem panel surya 100 Wp dapat memaksimalkan daya keluaran dari panel surya sebesar 56%-94% dibandingkan dengan penggunaan panel surya secara langsung tanpa menggunakan MPPT.


2018 ◽  
Vol 7 (2.31) ◽  
pp. 97 ◽  
Author(s):  
M Jayakumar ◽  
V Vanitha ◽  
V Jaisuriya ◽  
M Karthikeyan ◽  
George Daniel ◽  
...  

Solar power is widely available around the globe but efficient transfer of solar power to the load becomes a challenging task. There are various methods in which the power transfer can be done, the following work proposes a method for efficient tracking of solar power.  MPPT [ maximum power point tracking] algorithm applied on three phase voltage source inverter connected to solar PV array with a three phase load. MPPT is applied on inverter rather than conventionally applying MPPT on DC-DC converter. Perturb and Observe method is applied in the MPPT algorithm to find the optimal modulation index for the inverter to transfer maximum power from the panel. Sine pulse width modulation technique is employed for controlling the switching pattern of the inverter. The algorithm is programmed for changing irradiation and temperature condition. The system does not oscillate about the MPP point as the algorithm set the system at MPP and does not vary till a variation in irradiation is sensed.  The proposed system can be installed at all places and will reduce the cost, size and losses compared to conventional system. 


Sign in / Sign up

Export Citation Format

Share Document