scholarly journals Instructional Design for Student Learning on Quantum Tunneling

2012 ◽  
Vol 3 ◽  
pp. 27-34
Author(s):  
Shova Kanta Lamichhane

Acquiring mathematical, conceptual, and problem-solving skill is required in university-level physics courses. Average students often lack the knowledge and study skills need to succeed in physics, preciously in quantum physics course. The reasons for these difficulties are more subtle and some of them are brought to the surface. Addressing how to build models of wave functions and energy and how to relate these models to real physical systems is a challenging job. Article has opened up a floodgate of deep and difficult task for students struggle to make sense of these models. Article has discuss the difficulties and the real issues of student in learning quantum tunneling to build the models that are implicit in experts’ understanding. So that, in addition to class attendance and/or group study, students must also learn to work by themselves to develop the mathematical, conceptual, and problem-solving skills they need.The Himalayan PhysicsVol. 3, No. 32012Page : 27-34

2021 ◽  
Author(s):  
JOSHUA SAMANI ◽  
Steven C. Pan

We investigated whether continuously alternating between topics during practice, or interleaved practice, improves memory and the ability to solve problems in undergraduate physics. Over eight weeks, students in two lecture sections of a university-level introductory physics course completed thrice-weekly homework assignments, each containing problems that were interleaved (i.e., alternating topics) or conventionally arranged (i.e., one topic practiced at a time). On two surprise criterial tests containing novel and more challenging problems, students recalled more relevant information and more frequently produced correct solutions after having engaged in interleaved practice (with observed median improvements of 50% on test 1 and 125% on test 2). Despite benefiting more from interleaved practice, students tended to rate the technique as more difficult and incorrectly believed that they learned less from it. Thus, in a domain that entails considerable amounts of problem-solving, replacing conventionally-arranged with interleaved homework can (despite perceptions to the contrary) foster longer-lasting and more generalizable learning.


2017 ◽  
Vol 7 (1) ◽  
pp. 136 ◽  
Author(s):  
Teresa L Larkin

Introductory physics courses are an important rung on the curricular ladder in STEM. These courses help to strengthen students critical thinking and problem solving skills while simultaneously introducing them to many topics they will explore in more detail in later courses in physics and engineering. For these reasons, introductory physics is a required element on the curricular ladder. Most often, introductory physics is offered as a two-semester sequence with basic mechanics being taught in the first semester and electricity and magnetism in the second. In fact, this curricular sequence has not been altered in decades. Is there a reason for this? There are many other enduring questions that arise pertaining to these foundation courses in physics. These questions include: Does taking the introductory course sequence “out of order” have an impact on student learning in physics? What topics should be taught? When should these topics be taught? What topics could be left out? The list of questions is essentially endless. This paper will address some of these questions in part, through a brief discussion on student learning in a second-semester algebra-based physics course. Connections will also be made to the broader curricular ladder in STEM. To this end, an illustration that makes connections to an engineering statics course will be presented. This discussion will conclude by presenting some broader implications for the larger STEM communities.


Author(s):  
Tahir Tahir ◽  
Murniati Murniati

This research is based on learning in tertiary institutions which requires more active, independent and creative learners. of the importance of using appropriate learning methods in mathematics learning at the university level. SCAMPER is a technique that can be used to spark creativity and help overcome challenges that might be encountered in the form of a list of general goals with ideas spurring questions. This research aims to develop students' problem solving skills using the SCAMPER method in terms of student motivation. The population in this study were all semester V students of mathematics education study programs, which were also the research samples. From the analysis of the data it was found that the SCAMPER method was better in developing students' problem solving abilities with an average increase of 0.52 compared to conventional methods with an average increase of 0.45. In addition there is a difference between improving students' problem solving abilities when viewed from their motivation. But there is no interaction between motivational factors and learning methods.


2021 ◽  
pp. 73-84
Author(s):  
Sujito Sujito ◽  
Liliasari Liliasari ◽  
Andi Suhandi ◽  
Edy Soewono

The essence of mathematics is a thought process in constructing, applying abstract ideas, and their logical interrelationships. This process is essential in solving quantitative and qualitative physics problems, where abstract ideas are required to represent physical phenomena. This study aims to give detail description of the process of mathematical methods for physics lectures. Improvement in pre-service physics teachers' critical thinking is designed to strengthen their critical thinking and problem-solving skills. The methodology of research is qualitative descriptive. The research subjects were 97 pre-service physics teachers who had followed the mathematical methods for physics courses and teaching lecturers. Data collection consisted of questionnaires, and interviews. Observations are needed for describing the implementation of mathematical methods for physics courses, document analysis, and data collection, including lesson plan and assessment. The results showed that mathematical methods for physics courses need improvement in the learning process. It is concluded that lecture activities integrating computers into physics and mathematics are necessary to be implemented. It is expected that the program will improve students' ability in problem-solving, critical thinking skills, communication, digital era literacy, creative and innovative creations, and group work. Specifically, implementation of the program in the ordinary differential equations course can provide learning experiences to students regarding the process of reasoning in physics using mathematical principles.


2022 ◽  
Vol 2163 (1) ◽  
pp. 012010
Author(s):  
C A Hernández-Suarez ◽  
L S Paz-Montes ◽  
W R Avendaño Castro

Abstract The teaching of science, and specifically physics, has been associated with the acquisition of knowledge with a particular emphasis on problem solving, as an activity that brings students closer to the methodology and meaningful learning of science. However, problem solving is perhaps one of the sources of failure in physics teaching, which requires a careful analysis of this didactic activity. Therefore, the aim of this work is to analyze the development of students’ problem-solving skills in a physics course. An analysis is presented using the quasi-experimental method through the application of a pre-test – post-test, for which a methodological intervention was used based on the problem-solving competence, which focused on identifying errors and difficulties by the students themselves and thus favoring the learning and development of this competence, which allowed the academic progress of the students to be analyzed. It is concluded that the intervention supported by problem solving improves students’ performance, in addition to the positive assessment they make of the process, as well as its influence on the change in pedagogical practice.


2021 ◽  
Vol 1731 ◽  
pp. 012078
Author(s):  
S Sutarno ◽  
D H Putri ◽  
E Risdianto ◽  
M Satriawan ◽  
A Malik

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Joshua Samani ◽  
Steven C. Pan

AbstractWe investigated whether continuously alternating between topics during practice, or interleaved practice, improves memory and the ability to solve problems in undergraduate physics. Over 8 weeks, students in two lecture sections of a university-level introductory physics course completed thrice-weekly homework assignments, each containing problems that were interleaved (i.e., alternating topics) or conventionally arranged (i.e., one topic practiced at a time). On two surprise criterial tests containing novel and more challenging problems, students recalled more relevant information and more frequently produced correct solutions after having engaged in interleaved practice (with observed median improvements of 50% on test 1 and 125% on test 2). Despite benefiting more from interleaved practice, students tended to rate the technique as more difficult and incorrectly believed that they learned less from it. Thus, in a domain that entails considerable amounts of problem-solving, replacing conventionally arranged with interleaved homework can (despite perceptions to the contrary) foster longer lasting and more generalizable learning.


Sign in / Sign up

Export Citation Format

Share Document