Plant growth promoting rhizobacteria (PGPR): Biofertiliser and Biocontrol agent-Review article

2019 ◽  
Vol 8 ◽  
pp. 42-45
Author(s):  
Anup Muni Bajracharya

Good health starts with good food. Humans expect agriculture to supply good food with sufficient nutrients, economically and culturally valued foods, fibers and other products. But the excessive application of synthetic pesticides has exerted an adverse effect on bio-flora, fauna and natural enemies. Even a largest part of yield has been lost due to various stresses, like biotic and abiotic stresses to the plant. On this account, plant growth promoting rhizobacteria (PGPR), an eco-friendly biopesticides is boon for the biocontrol of different plant pathogens. Moreover, PGPR strains can enhance the plant growth through the production of various plant growth promoting substances. These are generally a group of microorganism that is found either in the plane of the rhizosphere or above roots impacting some positive benefits to plants. PGPR are associated with plant roots and augment plant productivity and immunity; however, recent work by several groups shows that PGPR also elicit so-called 'induced systemic tolerance' to salt and drought. PGPR might also increase nutrient uptake from soils, thus reducing the need for fertilizers and preventing the accumulation of nitrates and phosphates in agricultural soils. Scientific researches involve multidisciplinary approaches to understand adaptation of PGPR, effects on plant physiology and growth, induced systemic resistance, biocontrol of plant pathogens, bio fertilization, and potential green alternative for plant productivity, viability of co inoculating, plant microorganism interactions, and mechanisms of root colonization.

2017 ◽  
Vol 9 (1) ◽  
pp. 121-128
Author(s):  
S. Kumar ◽  
M. Singh ◽  
Sushil Sharma

The root rot disease in Jatropha curcas L. caused by Rhizoctonia. bataticola (Taub.) Butler has been recorded in causing 10-12 per cent mortality of 20-30 days old seedlings of Jatropha curcasin southern Haryana. The incidence of this disease has also been observed from other parts of Haryana too. Induction of systemic resistance in host plants through microbes and their bioactive metabolites are attaining popularity in modern agricultural practices. Studies on the plant growth-promoting rhizobacteria induced resistance in Jatropha curcas through phenyl propanoid metabolism against Rhizoctoniabataticola were undertaken at Chaudhary Charan Singh, Haryana Agricultural University, Regional Research Station, Bawal. Three plant growth-promoting rhizobacteria (PGPRs) viz., Pseudomonas maltophila, Pseudomonas fluorescens and Bacillus subtilis were evaluated for their potential to induce systemic resistance in Jatropha against root rot. The maximum increase of 97 per cent in total phenols, 120 per cent in peroxidase, 123 per cent in polyphenol oxidase, 101 per cent in phenylalanine ammonia lyase and 298 per cent in tyrosine ammonia lyase was detected in plants raised with Pseudomonas fluorescens+ Rhizoctoniaba-taticola inoculation in Jatropha curcas at 10 days post inoculation against control except total phenols where it was maximum (99%) at 30 DPI. There was slight or sharp decline in these parameters with age irrespective of inoculations. The pathogen challenged plants showed lower levels of total phenols and enzymes. The observations revealed that seed bacterization with Pseudomonas fluorescens results in accumulation of phenolics and battery of enzymes in response to pathogen infection and thereby induce resistance systemically.


Sign in / Sign up

Export Citation Format

Share Document