scholarly journals Design and Simulation of three Phase three Wire Shunt Active Filter using Instantaneous PQ Theory

2020 ◽  
Vol 15 (1) ◽  
pp. 181-186
Author(s):  
Tilak Giri ◽  
Ram Prasad Pandey ◽  
Sabin Bhandari ◽  
Sujan Moktan ◽  
Lagat Karki

Due to intensive use of power converters and other non-linear loads, power quality is degrading. The presence of harmonics in the power lines result in greater power losses in distribution, interference problems in communication systems. Non linearity reduces the efficiency and power factor of the system. As the power factor reduces, the reactive power demanded from the supply increases which have no any contribution in energy transfer, so compensation is required. For this, shunt passive filter has been developed but it is bulky and frequency dependent and has many drawbacks. In contrast to passive filter, shunt active filter (SAF) has been developed which is smaller and has wide range of applications. In this paper, shunt active filter based on p-q theory is demonstrated for compensating reactive power and current harmonics. Simulation has been done with and without SAF and results are presented and ended with recommendation and conclusion. An effort is made to reduce the THD of the source current below 5% (specified by IEEE).

2004 ◽  
Vol 68 (2) ◽  
pp. 157-165 ◽  
Author(s):  
Bor-Ren Lin ◽  
Ta-Chang Wei ◽  
Huann-Keng Chiang

2021 ◽  
Vol 3 (2) ◽  
pp. 19-30
Author(s):  
Mostafa Q. Kasim ◽  
Raaed Faleh Hassan

The work presented in this paper deals with a proposal of a new topology of a multilevel inverter to act as a Static synchronous Compensator (STATCOM). The proposed inverter is the five-level Asymmetric Stacked Multi-Level Inverter (ASMLI). One of the essential features of this inverter that distinguishes it from the conventional types is that it achieves the required voltage levels with fewer switching devices, leading to simplifying the control process. Moreover, the work includes using a Finite Control Set Model Predictive Current Control (FCS-MPCC) to control the proposed structure. The FCS-MPCC control strategy performs the finite optimization process at the current sampling instant to provide the optimum switching states to the inverter at the next sampling instant. Therefore, this control strategy allows injecting harmonic current and reactive power compensation to reduce source current distortion and improve the voltage profile and power factor. The optimization mechanism reduces the cost function, which is a function of measuring the network current's deviation from the reference value and how the capacitor voltage deviates from the required values. LCL-filter was used to connect this setup to the grid, and its resonance was actively damped using the multivariable capabilities of the FCS-MPCC. The proposed control framework was simulated using MATLAB/Simulink 9.1 environment and tested in a distorted and healthy network compared to a conventional two-level converter with RL-filter. The STATCOM was used to inject reactive power to raise the source power factor to unity and reduce source current harmonics by injecting harmonic current. The proposed prototype could absorb 70% of source current harmonics, which is nearly 25% better than a conventional inverter, inject an appropriate amount of reactive power, and raise the source power factor to unity in two case scenarios. The performance achieved was promising at steady-state operation and speedy response during transients with balanced capacitors voltages.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Moulay Tahar Lamchich

This paper deals with the use of triphase shunt active filter which is able to compensate current harmonics, reactive power, and current unbalance produced by nonlinear loads. To perform the identification of disturbing currents, a very simple control method is introduced. It’s formed by a DC voltage regulator and a balance between the average power of load and the active power supplied by the grid. The output current of the voltage source inverter (VSI) must track the reference current. This is done by a neural controller based on a PI-Fuzzy adaptive system as reference corrector. Also to regulate the DC link capacitor voltage a fuzzy logic adaptive PI controller is used.


2011 ◽  
Vol 1 (4) ◽  
pp. 98-104 ◽  
Author(s):  
S. Mikkili ◽  
A. K. Panda

Commencing with incandescent light bulb, every load today creates harmonics. Unfortunately, these loads vary with respect to their amount of harmonic content and response to problems caused by harmonics. Issue of Harmonics are of a greater concern to engineers, building designers and in industrial applications because they do more than distort voltage waveforms, they can overheat the building wiring, cause nuisance tripping, overheat transformer units, and cause random end-user equipment failures. Thus power quality has become more and more serious with each passing day. As a result active power filter (APF) gains much more attention due to excellent harmonic compensation. But still the performance of the active filter seems to be in contradictions with different control techniques. The main objective of this paper is to analyse shunt active filter with fuzzy and pi controllers. To carry out the analysis, we consider active and reactive power method (p-q). Extensive simulations were carried out; simulations were performed with balance, unbalanced and non sinusoidal conditions. Simulation results validate the dynamic behaviour of fuzzy logic controller over pi controller.


Sign in / Sign up

Export Citation Format

Share Document