Journal of Wind Energy
Latest Publications


TOTAL DOCUMENTS

16
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

Published By Hindawi Limited

2314-6249, 2356-7732

2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
A. Elsherif ◽  
T. Fetouh ◽  
H. Shaaban

In recent years a multitude of events have created a new environment for the electric power infrastructure. The presence of small-scale generation near load spots is becoming common especially with the advent of renewable energy sources such as wind power energy. This type of generation is known as distributed generation (DG). The expansion of the distributed generators- (DGs-) based wind energy raises constraints on the distribution networks operation and power quality issues: voltage sag, voltage swell, voltage interruption, harmonic contents, flickering, frequency deviation, unbalance, and so forth. Consequently, the public distribution network conception and connection studies evolve in order to keep the distribution system operating in optimal conditions. In this paper, a comprehensive power quality investigation of a distribution system with embedded wind turbines has been carried out. This investigation is carried out in a comparison aspect between the conventional synchronous generators, as DGs are widely in use at present, and the different wind turbines technologies, which represent the foresightedness of the DGs. The obtained results are discussed with the IEC 61400-21 standard for testing and assessing power quality characteristics of grid-connected wind energy and the IEEE 1547-2003 standard for interconnecting distributed resources with electric power systems.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
A. Z. Dhunny ◽  
M. R. Lollchund ◽  
S. D. D. V. Rughooputh

Interests in wind energy have gained impetus in many developed and developing countries worldwide during the last three decades. This is due to awareness of the population about the depletion of fossil fuels as well as Government campaigns and initiatives to encourage the use of renewable sources of energy. This work focuses on the wind energy potential at two selected locations (Plaisance and Vacoas) in Mauritius. The emphasis is to assess whether small-wind turbines have a potential in these regions for generation of power for domestic applications. Such wind turbines can range in size from 400 W to 10 kW depending on the amount of electricity to be generated. The assessment is based on the correlation of the local wind speed data to a two-parameter Weibull probability distribution in order to effectively estimate the average wind power density of the sites. Nearly 40 years of mean wind speed data is utilized. Of the two sites investigated it is found that Plaisance yielded the highest wind velocity (as compared to Vacoas). The study also estimates the energy output of six commercial small-wind turbines of capacity ranging from 1 kW to 3 kW at these two sites, placed at multiple heights.


2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Maro Jinbo ◽  
Felix Alberto Farret ◽  
Ghendy Cardoso Junior ◽  
Daniel Senter ◽  
Marcelo Franklin Lorensetti

This paper presents an algorithm MPPT (Maximum Power Point Tracking) for a Magnus wind system with a DC servo drive system (DC drive and BLDC motor) to rotate the turbine cylinders. The optimal cylinders rotation is the one to deliver the maximum power extracted from the wind tracked by fixed and adaptive step HCC (Hill Climbing Control) acting on the servo drive. The proposed wind system consists of a PMSG (Permanent Magnet Synchronous Generator), a three-phase diode rectifier, a DC/DC (boost) converter, and a resistive load. Furthermore, the boost converter acts with the fixed step HCC algorithm to track the maximum power operating point. Therefore, the MPPT for a Magnus wind system requires both tracking for the optimal cylinder speed and the optimal generator speed.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Ranjeet Agarwala ◽  
Paul I. Ro

This paper focuses on the deployment and evaluation of a separated pitch control at blade tip (SePCaT) control strategy for large megawatt (MW) wind turbine blade and explorations of innovative blade designs as a result of such deployment. SePCaT configurations varied from five to thirty percent of the blade length in 5 percentage increments (SePCaT5, SePCaT10, SePCaT15, SePCaT20, SePCaT25, and SePCaT30) are evaluated by comparing them to aerodynamical responses of the traditional blade. For low, moderate, high, and extreme wind speed variations treated as 10, 20, 30, and 40 percent of reference wind speeds, rotor power abatement in region 3 of the wind speed power curve is realized by feathering full length blade by 6, 9, 12, and 14 degrees, respectively. Feathering SePCaT30, SePCaT25, SePCaT20, and SePCaT15 by 14, 16, 26, and 30 degrees, respectively, achieves the same power abatement results when compared to traditional blade at low wind speeds. Feathering SePCaT30, SePCaT25, and SePCaT20 by 18, 26, and 30 degrees on the other hand has the same effect at high wind speeds. SePCaT30 feathered to 26 and 30 degrees has the same abatement effects when compared to traditional blade at high and extreme wind speeds.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Aarti Gupta ◽  
Dinesh Kumar Jain ◽  
Surender Dahiya

Autonomous wind energy conversion systems sharing a common load consist of a number of voltage source converters operating in parallel. A suitable control system should ensure desired load sharing among these as a number of these sources operating in parallel are required to meet the load demand and load excursions should not lead to instability of the system. In absence of the grid there is no reference angle for synchronization. Hence, a control scheme for parallel-connected three-phase converters incorporating the desirable features needs to be developed in order to exploit the renewable energy sources, which are intermittent in nature as effectively as possible in case of an autonomous microgrid. A simple and effective droop control strategy without the use of conventional αβ technique incorporating only dq components has been proposed for load sharing among wind energy conversion systems connected by back to back voltage source converters in autonomous operation. The need for communication link should also be avoided, hence reducing the system cost. The system is modelled using Matlab and the control is authenticated by simulation results.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
T. R. Ayodele

Wind power is highly variable due to the stochastic behavior of wind speeds. This intermittent nature could excite the electromechanical modes resulting in the small signal instability of a power system. In this study, the performance of static VAR compensation (SVC) and thyristor controlled series capacitor (TCSC) controllers in the damping of electromechanical modes is analyzed and compared. The study employs probabilistic modal analysis method using Monte Carlo simulation and Latin hypercube sampling techniques. Various scenarios are created to get insight into the study. The results obtained from the modal analysis are verified by using the time-domain simulation. Some of the key results show that SVC is more robust in the damping of electromechanical modes compared to TCSC. The result also reveals that allocation of power system stabilizer (PSS) using probabilistic method is more effective and robust compared to deterministic approach.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Saravanakumar Rajendran ◽  
Debashisha Jena

The paper presents a nonlinear approach to wind turbine (WT) using two-mass model. The main aim of the controller in the WT is to maximize the energy output at varying wind speed. In this work, a combination of linear and nonlinear controllers is adapted to variable speed variable pitch wind turbines (VSVPWT) system. The major operating regions of the WT are below (region 2) and above rated (region 3) wind speed. In these regions, generator torque control (region 2) and pitch control (region 3) are used. The controllers in WT are tested for below and above rated wind speed for step and vertical wind speed profile. The performances of the controllers are analyzed with nonlinear FAST (Fatigue, Aerodynamics, Structures, and Turbulence) WT dynamic simulation. In this paper, two nonlinear controllers, that is, sliding mode control (SMC) and integral sliding mode control (ISMC), have been applied for region 2, whereas for pitch control in region 3 conventional PI control is used. In ISMC, the sliding manifold makes use of an integral action to show effective qualities of control in terms of the control level reduction and sliding mode switching control minimization.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Alice Coburn ◽  
Eilín Walsh ◽  
Patrick J. Solan ◽  
Kevin P. McDonnell

Ireland has one of the highest wind energy potentials in Europe. The intermittent nature of wind makes this renewable resource impractical as a sole source of energy. Combining wind energy with pumped hydro energy storage (PHES) can overcome this intermittency, consuming energy during low-demand periods and supplying energy for periods of high demand. Currently Ireland has a number of hydroelectric power plants and wind farms of various scales in operation. A feasibility study was conducted to investigate the potential of securing a reliable source of renewable energy by increasing the penetration of hydroelectric power by means of combined wind-PHES developments. The greatest wind potential is experienced along the western coast of Ireland and a number of sites were identified here which satisfied a minimum mean wind speed criterion of 10.5 ms−1. Each site was then further evaluated according to topographical requirements for PHES. All but two of the identified sites are immediately unsuitable due to the presence of areas protected under European legislation; this highlights the nonenergy related obstacles in the path of renewable energy generation in Ireland and suggests that a compromise should be researched which could facilitate both renewable energy generation and species and habitat protection in Europe.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Stylianos Sp. Pappas ◽  
Dimitrios Ch. Karamousantas ◽  
George E. Chatzarakis ◽  
Christos Sp. Pappas

An alternative electric power source, such as wind power, has to be both reliable and autonomous. An accurate wind speed forecasting method plays the key role in achieving the aforementioned properties and also is a valuable tool in overcoming a variety of economic and technical problems connected to wind power production. The method proposed is based on the reformulation of the problem in the standard state space form and on implementing a bank of Kalman filters (KF), each fitting an ARMA model of different order. The proposed method is to be applied to a greenhouse unit which incorporates an automatized use of renewable energy sources including wind speed power.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Sikandar Khan ◽  
Kamran Shah ◽  
Izhar-Ul-Haq ◽  
Hamid Khan ◽  
Sajid Ali ◽  
...  

This paper describes the starting behavior of small horizontal axis wind turbines at high angles of attack and low Reynolds number. The unfavorable relative wind direction during the starting time leads to low starting torque and more idling time. Wind turbine models of sizes less than 5 meters were simulated at wind speed range of 2 m/s to 5 m/s. Wind turbines were modeled in Pro/E and based on the optimized designs given by MATLAB codes. Wind turbine models were simulated in ADAMS for improving the starting behavior. The models with high starting torques and less idling times were selected. The starting behavior was successfully improved and the optimized wind turbine models were able to produce more starting torque even at wind speeds less than 5 m/s.


Sign in / Sign up

Export Citation Format

Share Document