scholarly journals Sizing and Simulation of PV-Wind Hybrid Power System

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Mustafa Engin

A sizing procedure is developed for hybrid system with the aid of mathematical models for photovoltaic cell, wind turbine, and battery that are readily present in the literature. This sizing procedure can simulate the annual performance of different kinds of photovoltaic-wind hybrid power system structures for an identified set of renewable resources, which fulfills technical limitations with the lowest energy cost. The output of the program will display the performance of the system during the year, the total cost of the system, and the best size for the PV-generator, wind generator, and battery capacity. Security lightning application is selected, whereas system performance data and environmental operating conditions are measured and stored. This hybrid system, which includes a PV, wind turbine, inverter, and a battery, was installed to supply energy to 24 W lamps, considering that the renewable energy resources of this site where the system was installed were 1700 Wh/m2/day solar radiation and 3.43 m/s yearly average wind speed. Using the measured variables, the inverter and charge regulator efficiencies were calculated as 90% and 98%, respectively, and the overall system’s electrical efficiency is calculated as 72%. Life cycle costs per kWh are found to be $0.89 and LLP = 0.0428.

2020 ◽  
Vol 15 (3) ◽  
pp. 360-367
Author(s):  
Khagendra Bahadur Thapa ◽  
Arbin Maharjan ◽  
Kishor Kaphle ◽  
Kishor Joshi ◽  
Tara Aryal

The adaptation of renewable energy has been increasing in a very encouraging way all over the world. Among various renewable energy resources, wind and solar energy are the promising sources of alternative energy. Wind and solar photovoltaic (PV) have been employed in parallel as a hybrid system for better electricity service. This paper presents a case study and modeling of wind-solar hybrid system in Hriharpur Gadi village, Sindhuli District, Nepal. The hybrid system yields 110kWh of energy per day meeting the village’s electricity demand of 87 kWh per day. Moreover, the hybrid power system with battery storage system is modeled using MATLAB simulator. Further, improvising in the existing modeling has been presented to enhance the efficiency and effectiveness of the system.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2781
Author(s):  
Yue Zhou ◽  
Hussein Obeid ◽  
Salah Laghrouche ◽  
Mickael Hilairet ◽  
Abdesslem Djerdir

In order to improve the durability and economy of a hybrid power system composed of a battery and supercapacitors, a control strategy that can reduce fluctuations of the battery current is regarded as a significant tool to deal with this issue. This paper puts forwards a disturbance rejection control strategy for a hybrid power system taking into account the degradation of the battery. First, the degradation estimation of the battery is done by the model-driven method based on the degradation model and Cubature Kalman Filter (CKF). Considering the transient and sinusoidal disturbance from the load in such a hybrid system, it is indispensable to smooth the behavior of the battery current in order to ensure the lifespan of the battery. Moreover, the constraints for the hybrid system should be considered for safety purposes. In order to deal with these demands, a cascaded voltage control loop based on a super twisting controller and proportional integral controller with an anti-windup scheme is designed for regulating the DC bus voltage in an inner voltage loop and supercapacitors’ voltage in an outer voltage loop, respectively. The specific feature of the proposed control method is that it operates like a low-pass filter so as to reduce the oscillations on the DC bus.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2237 ◽  
Author(s):  
Andrew Swingler ◽  
Jordan Torrealba

In this communication, the measured behaviour of a lead-acid battery bank within a stand-alone residential solar photovoltaic (PV)-genset-battery hybrid power system in Canada is presented and discussed. In order to capture rare field-based battery performance data, a newly commissioned lead-acid battery bank was equipped with a battery monitoring device capable of logging voltage, current, temperature and amp-hours every 30 s for the life of the battery. The measured data captures a severe loss of battery capacity due to a combination of short-term deep discharge and extended partial state of charge operation—conditions not unusual during winter season PV-genset-battery hybrid power system operation. Subsequent manual override of the system control set points to encourage gradual battery overcharge are shown to recover the lead-acid battery bank’s performance over the following three months. Limitations of the power conversion system’s battery management approach are discussed and a novel closed loop control system for improving lead-acid based PV-genset-battery hybrid system performance is rationalized and proposed for further research.


2012 ◽  
Vol 608-609 ◽  
pp. 790-795
Author(s):  
Dong Lei ◽  
Lv Qin ◽  
Pu Tianjiao ◽  
Zhou Haiming

Renewable energy resources such as wind, wave, solar and biomass are becoming more important, and Wind-PV-ES hybrid power system is a promising and efficient utilization of renewable energy. Based on the sequential Monte-Carlo simulation approach, an evaluation model of Wind-PV-ES hybrid generation system is built, and storage time series model is optimized. Lastly, the effectiveness and feasibility of the proposed model is verified by a practical example, and the system impacts of PV penetration level, energy storage capacity and rated output power are illustrated.


Author(s):  
Amara Mohamed ◽  
Zablah Abdelkader ◽  
Bouanane Abdelkrim

The absence of electricity in rural areas is one of the major challenges faced by many developing countries like Algeria. This work has been devoted to the design of an off-grid renewable hybrid power system for a rural village in the region of Tindouf located in south Algeria. The main objective of this study is to determine the optimum size of the hybrid power system able to fulfill the requirements of 709 kWh/day primary load with 66 kW peak load for a remote area of 230 households. This study is based on simulation and optimization of a (PV-Diesel) and (PV-GPL) hybrid system with a technical-economic analysis. Simulation results showed that electrifying using a PV/GPL generator hybrid system is more advantageous when compared to the PV/diesel generator hybrid system as it has lower operating costs and emissions. The comparison is based on per unit cost of electrical energy production, operating cost of conventional fossil fuel-based energy sources and pollutants gases reduction.


2020 ◽  
Vol 64 (02) ◽  
pp. 171-184
Author(s):  
Nengqi Xiao ◽  
Xiang Xu ◽  
Baojia Chen

This article introduces the composition and 12 operating conditions of a four-engine two-propeller hybrid power system. Through the combination of gearbox clutch and disconnection, the propulsion system has four single-engine operation modes, two double-engine parallel operation modes, and six PTI operation modes. Because the propulsion system has a variety of operating conditions, each operating condition has a form of energy transfer. As a result, its energy management and control are more complicated. To study the energy management and control strategy of a diesel- electric hybrid propulsion system, this work mainly studies the simulation model and sub-models of a diesel-electric hybrid propulsion system. In this study, MATLAB/ SIMULINK software is used to build the diesel engine model, motor model, and ship engine system mathematical model. The test and analysis were carried out on the test bench of the diesel-electric hybrid power system. By comparing the theoretical value of the SIMULINK simulation model with the test value of the test bench system, the correctness of each sub-model modeling method is verified. On the one hand, research on the text lays a theoretical foundation for the subsequent implementation of the conventional energy management and control strategy based on state identification on the unified management and distribution of the diesel-electric hybrid power system. At the same time, energy management of the diesel-electric hybrid system is also carried out. Optimization research provides theoretical guidance.


2018 ◽  
Vol 8 (1) ◽  
pp. 2609-2615
Author(s):  
P. Gupta ◽  
P. Swarnkar

The result of DG clustering is the hybrid power system while further clustering forms the intertied hybrid power system. Interfacing of intertied hybrid power system requires an interlinking converter with a legitimate power administration and control system. In contrast to individual hybrid power system (HPS), power administration of the intertied hybrid system is more complex. Autonomous droop strategy is appropriate for the intertied hybrid system where communication links are not possible. This paper proposes a new topology for control in intertied hybrid system where two hybrid power systems are connected to each other through interlink power converter. Evaluated frequencies in different HPSs can diverse. In order to manage power flow a power management strategy with consideration characteristics of common bus, a PDC-vDC2 method is proposed, and compared with conventional droop, to realize power sharing among HPS. The practicability of the proposed power sharing method is realized in MATLAB/Simulink platform.


Sign in / Sign up

Export Citation Format

Share Document