scholarly journals Short term radiological outcome of inserting screw at fracture level in posterior short segment fixation in thoracolumbar burst fractures

2017 ◽  
Vol 4 (3) ◽  
pp. 71-76
Author(s):  
Rabindra Lal Pradhan ◽  
Bimal Kumar Pandey ◽  
Krishna Raj Khanal

Background: Unstable thoracolumbar burst fractures are treated surgically by short segment fixation but may be associated with high implant failure. Supplementation of anterior column by insertion of screw at fracture site makes it more biomechanically stable.Objectives: The purpose of this prospective study was to evaluate radiological parameters in thoracolumbar fractures treated with intermediate screw fixation with a minimum follow up of two years.Methods: This prospective study was conducted from 2011 till 2012 where unstable  thoracolumbar fractures treated with short segment posterior instrumentation with screw at fracture site were evaluated. All patients (average age 34.64 were followed up for at least 24 months and were classified according to Thoracolumbar Injury Classification and Severity Score and load sharing classifi cation. Out of total 32 patients, four lost to follow up. Radiological parameters like vertebral body height and segmental kyphosis were evaluated and pain was evaluated by Visual Analogue Scale score.Results: Preoperative pain showed mean Visual Analogue Scale Score score of 8.29 that improved to 0.97 at fi nal follow up. Average preoperative loss of vertebral body height was 48.19 %, which improved to 11.4 % after surgery (p<.001). Final vertebral body collapse was 12.98 % with mean percentage loss of vertebral height at 1.57%. Average segmental kyphotic angle was 22.54 before surgery, which corrected to 5.89 immediately after surgery (p<0.001). Final segmental kyphosis was 8.46. Loss of kyphosis correction was 2.57. Two patients had implant failure, but was solidly united during implant removal in both cases.Conclusion: Excellent maintenance of reduction in thoracolumbar burst fractures with short segment fixation with intermediate screws at fracture site with limited decompression resulted in improved neurologic function and satisfactory clinical outcomes, with a low incidence of implant failure and progressive deformity.

2021 ◽  
Vol 36 (1) ◽  
Author(s):  
Ali R. Hamdan ◽  
Radwan Nouby Mahmoud ◽  
Ahmed G. Tammam ◽  
Eslam El-Sayed El-Khateeb

Abstract Background Thoracolumbar fractures represent a widespread injuries that can cause significant disability and strain the healthcare system. Different surgical approaches are described in the literature. This study was conducted to evaluate the fractured level inclusion in short-segment fixation of thoracolumbar junction spine fractures. Results Preoperative neurological deficit was reported in seven patients ranging from ASIA grade C to D. All of these patients improved to grade E by the end of the follow-up period, except for one patient who improved from grade C to D. The mean Oswestry Disability Index was 19.87%. The mean postoperative Cobb angle was 11.77° which significantly improved compared to a preoperative value of 19.37°. There was a significant improvement in the postoperative anterior and posterior vertebral body height compared to the preoperative values. The vertebral body compression ratio significantly improved during the postoperative period to a mean of 84% compared to 76% preoperative. Conclusions There was significant improvement of the postoperative values of the mean Cobb angle, the anterior and the posterior vertebral body height as well as the vertebral body compression ratio compared to the preoperative values.


2021 ◽  
pp. E631-E638

BACKGROUND: There are controversies about the optimal management of AO subtype A3 burst fractures. The most common surgical treatment consists of posterior fixation with pedicle screw and rod augmentation. Nevertheless, a loss of correction in height restoration and kyphotic reduction has been observed. OBJECTIVES: The aim of this study was to assess long-term outcomes of a minimally invasive technique using a percutaneous intravertebral expandable titanium implant (PIETI). STUDY DESIGN: This prospective, single center, pilot study was carried out on a consecutive case series of 44 patients with acute (< 2 weeks) traumatic thoracolumbar fractures AO type A3. The average follow-up was 5.6 years. SETTING: A single center in Castilla y Leon, Spain METHODS: Clinical outcomes (pain intensity on visual analog scale [VAS], Oswestry Disability Index [ODI], analgesic consumption) and radiographic outcomes (anterior/mid/posterior vertebral body height, vertebral area, local kyphosis angle, traumatic regional angulation) were analyzed before surgery, at one month after surgery, and at the end of the follow-up period. RESULTS: At one-month postsurgery, significant improvements in VAS score and ODI score were observed. PIETI achieved significant vertebral body height restoration with median height increases of 2.9 mm/4.3 mm/2.3 mm for anterior/middle/posterior parts, respectively. Significant correction of the local kyphotic angle and improvement of the traumatic regional angulation were accomplished. All these improvements were maintained throughout the follow-up period. The only complication reported was a case of cement leakage. LIMITATIONS: In our opinion, the main limitation of the study is the small number of patients. However, the sample is superior to that shown in other papers. CONCLUSIONS: This study showed that using a PIETI in the treatment of fractures type A3 is a safe and effective method that allows marked clinical improvement, as well as anatomical vertebral body restoration. Unlike with other treatments, results were maintained over time, allowing a better long-term clinical and functional improvement. The rate of cement leakage was lower than other reports. KEY WORDS: Traumatic thoracolumbar fractures, burst fractures, AO type A3 fractures, kyphoplasty, percutaneous intravertebral expandable titanium implant


2019 ◽  
Vol 129 ◽  
pp. e191-e198
Author(s):  
Jae-Young Hong ◽  
Sung-Woo Choi ◽  
Gi Deok Kim ◽  
HyunKwon Kim ◽  
Byung-Joon Shin ◽  
...  

2016 ◽  
Vol 07 (S 01) ◽  
pp. S057-S061
Author(s):  
Mehmet Onur Yüksel ◽  
Mehmet Sabri Gürbüz ◽  
Şevki Gök ◽  
Numan Karaarslan ◽  
Merih İş ◽  
...  

ABSTRACT Aim: Our aim was to determine whether a combination of sagittal index (SI), canal compromise (CC), and loss of vertebral body height (LVBH) is associated with the severity of neurological injury in patients with thoracolumbar burst fractures. Materials and Methods: Seventy-four patients with thoracolumbar burst fracture undergoing instrumentation between 2010 and 2015 were analyzed retrospectively. The degree of neurological injury was determined using the American Spinal Injury Association (ASIA) scoring system. The association between the morphology of the fracture and the severity of neurological injury was analyzed. Results: There was a strong association between fracture morphology and the severity of neurological injury. Of the patients, 77.5% with SI ≥20°, 81.6% with CC ≥40%, and 100% with LVBH ≥50% had lesion according to ASIA. All of 7 patients with ASIA A had SI ≥20°, CC ≥40%, and LVBH ≥50%. On the other hand, 79% of the patients with ASIA E had SI <20°, 83.7% of the patients with ASIA E had CC <40%, and all of the patients with ASIA E had LVBH <50%. SI, CC, and LVBH were lower in neurologically intact patients (ASIA E), whereas they were higher in patients with neurological deficits (ASIA A, B, C, D) (P = 0.001; P < 0.01). These measurements had 100% negative predictive values and relatively high positive predictive values. Conclusion: SI, CC, and LVBH are significantly associated with the severity of neurological injury in patients with thoracolumbar burst fractures. The patients with SI >25°, the patients with CC >40%, and the patients with LVBH >50% are likely to have a more severe neurological injury.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Jen-Chung Liao ◽  
Wen-Jer Chen

Background. For thoracolumbar burst fractures, traditional four-screw (one above and one below) short-segment instrumentation is popular and has a high failure rate. Additional augmentation at the fractured vertebrae is believed to reduce surgical failure. The purpose of this study was to examine the clinical and radiographic results of patients who underwent short-segment posterior instrumentation with augmentation by screws and bone substitutes at the fractured vertebrae and to compare these data to those of patients who underwent long-segment instrumentation for thoracolumbar burst fractures. Methods. The study group had twenty patients who underwent short-segment instrumentation with additional augmentation by two screws and bone substitutes at the fractured vertebrae. The control group contained twenty-two patients who underwent eight-screw long instrumentation without vertebra augmentation. Local kyphosis and the anterior body height of the fractured vertebrae were measured. The severity of the fractured vertebrae was evaluated with the load sharing classification (LSC). Any implant failure or loss of correction >10° at the final follow-up was defined as surgical failure. Results. Both groups had similar distributions in terms of age, sex, the injured level, and the mechanism of injury before operation. During the operation, the study group had significantly less blood loss (136.0 vs. 363.6 ml, p=0.001) and required shorter operating times (146.8 vs. 157.5 minutes, p=0.112) than the control group. Immediately after surgery, the study group had better correction of the local kyphosis angle (13.4° vs. 11.9°, p=0.212) and restoration of the anterior height (34.7% vs. 31.0%, p=0.326) than the control group. At the final follow-up, no patients in the study group and only one patient in the control group experienced surgical failure. Conclusions. Patients with thoracolumbar burst fractures who received six-screw short-segment posterior fixators with augmentation at the level of the fractured vertebrae via injectable artificial bone substitute achieved satisfactory clinical and radiographic results, and this method could replace long-segment instrumentation methods used in unstable thoracolumbar burst fractures.


2021 ◽  
Author(s):  
Jesús Payo-Ollero ◽  
Rafael Llombart-Blanco ◽  
Carlos Villas ◽  
Matías Alfonso

Abstract Changes in vertebral body height depend on various factors which were analyzed in isolation and not as a whole. The aim of this study is to analyze what factors might influence restoration of vertebral body height after vertebral augmentation. We analyzed 48 patients (108 vertebrae) with osteoporotic vertebral fractures underwent vertebral augmentation when conservative treatment proved unsatisfactory. Analyses were carried out at the time of the fracture, during surgery (pre-cementation and post-cementation), at first medical check-up (6 weeks post-surgery) and at last medical check-up. Average vertebral height was measured and differences from preoperative values calculated at each timepoint. Pearson correlation coefficient and linear multivariable regression were carried out at the different timepoints. The time since vertebral fracture was 60.4 ± 41.7 days. Patients’ average age was 70.9 ± 9.3-years. The total follow-up was 1.43 ± 1-year. After vertebral cementation there was an increase in vertebral body height of + 0.3cm (13.6%). During post-operative follow-up, there was a progressive collapse of the vertebral body and pre-surgical height was reached. The factors that most influenced vertebral height restoration were: grade III collapse, intervertebral-vacuum-cleft (IVVC), and use of a flexible trocar before cement augmentation. The factor that negatively influenced vertebral body height restoration was location in the thoracolumbar spine.


Author(s):  
Naushad Hussain ◽  
Nirmal Dhananjay Patil ◽  
Hiren Patel ◽  
Akash Shakya

<p class="abstract"><strong>Background:</strong> Pedicle screw instrumentation in case of fracture spine provides stable fixation. However in absence of experience and proper technique of pedicle screw insertion, it is associated with many complications. We aim to study the results of patients with thoracolumbar fracture stabilized with short segment pedicle screw instrumentation.</p><p class="abstract"><strong>Methods:</strong> 33 cases of thoracolumbar wedge compression fracture spine presenting to Nair Hospital were included in the study. All patients were operated by the senior author via a posterior approach and short segment pedicle screw fixation. Patients were followed up for one year.<strong></strong></p><p class="abstract"><strong>Results:</strong> 33 patients with a mean age were 37.6 years of which 3 were females and 30 were males in our study. Fall from height (93.93%) was the most common mode of injury followed by road traffic accident (6.07%). D12 and L1 were the most common vertebrae involved. Statistically significant (p=0.01) correction in the vertebral body height occurred in the immediate postop period and there was 4.1% loss of correction at final follow-up. There was statistically significant improvements in the Regional angle (p=0.03) and anterior wedge angle (p=0.03). Residual regional angle at final follow-up was found to be &gt;5° in 3 patients. Neurological improvement was seen in 23 (74.19%) patients (p=0.01). No improvements were seen in 8 (25.81%) patients. None of our patients had postoperative worsening of the neurological status. None of the patients had pedicle wall breach on final follow up CT scan.</p><p class="abstract"><strong>Conclusions:</strong> Short segment fixation in case of wedge fracture can restore the vertebral body height, mean regional angle and mean anterior wedge angle and provide good outcome. There are poor chances of recovery of patient with Frankel grade A. Meticulous dissection and careful technique of pedicle screw insertion, adequate decompression, good contouring of the rod with correction of kyphosis can provide excellent results.</p>


Sign in / Sign up

Export Citation Format

Share Document