scholarly journals Selection of Pyramided Barley Advanced Lines for Stripe Rust, Leaf Rust and Crown Rust Diseases Using Molecular Markers

2020 ◽  
Vol 8 (3) ◽  
pp. 111-115
Author(s):  
Resham B. Amgai ◽  
Shreejan Pokharel ◽  
Sumitra Pantha ◽  
Atit Parajuli ◽  
Sudeep Subedi ◽  
...  

Barley diseases are the major yield limiting factors for barley cultivation in Nepal. Stripe/Yellow rust (P. striformis f.sp. hordei and P. striformis f.sp. tritici), leaf rust (Puccinia hordei), and crown rust (P. coronata) are the major rust diseases in Nepal. Pyramiding resistance genes against all these rust diseases are possible through molecular marker assisted breeding. Sweden originated barley variety ‘Bonus’ is found resistant to stripe rust and having linked microsatellite markers for stripe rust and crown rust resistance. Similarly, Nepalese hull-less barley variety ‘Solu Uwa’ and Nepalese awn-less barley landrace NPGR Acc# 2478 have linked microsatellite markers for leaf rust resistance. Therefore, one polymorphic sequence tagged sites (STS) marker (ABG054) for stripe rust resistance, two polymorphic simple sequence repeats (SSR) markers (Bmac0144h and HVM049) for leaf rust and one polymorphic SSR marker (Bmag0006) for crown rust resistance were used to select the advanced barley lines (at F8 stage) from above parents. Field screening of stripe rust resistance was also conducted. Among 51 advanced and field disease resistance lines from Bonus/Solu Uwa cross, we have selected 10 pyramided lines for all three types of barley rust resistance. Similarly, among 39 advanced and field disease resistance lines from Bonus/NPGR Acc#2478 cross we have selected three pyramided lines and advanced for further yield testing for general cultivation purpose. The chances of losing the desired gene are high in late generation selection using molecular marker assisted selection (MAS); but the chances of getting agronomically superior varietal output will also increase.

Plant Disease ◽  
2018 ◽  
Vol 102 (2) ◽  
pp. 421-427 ◽  
Author(s):  
L. J. Ponce-Molina ◽  
J. Huerta-Espino ◽  
R. P. Singh ◽  
B. R. Basnet ◽  
G. Alvarado ◽  
...  

Since 1984, the ‘Chilero’ spring wheat line developed by CIMMYT has proven to be highly resistant to leaf rust and stripe rust. Amid efforts to understand the basis of resistance of this line, a recombinant inbred line (RIL) population derived from a cross between Avocet and Chilero was studied. The parents and RILs were characterized in field trials for leaf rust and stripe rust in three locations in Mexico between 2012 and 2015 and genotyped with DArT-array, DArT-GBS, and SSR markers. A total of 6,168 polymorphic markers were used to construct genetic linkage maps. Inclusive composite interval mapping detected four colocated resistance loci to both rust diseases and two stripe rust resistant loci in the Avocet × Chilero population. Among these, the quantitative trait locus (QTL) on chromosome 1BL was identified as a pleotropic adult plant resistance gene Lr46/Yr29, whereas QLr.cim-5DS/QYr.cim-5DS was a newly discovered colocated resistance locus to both rust diseases in Chilero. Additionally, one new stripe rust resistance locus on chromosome 7BL was mapped in the current population. Avocet also contributed two minor colocated resistance QTLs situated on chromosomes 1DL and 4BS. The flanking SNP markers can be converted to breeder friendly Kompetitive Allele Specific PCR (KASP) markers for wheat breeding programs.


2007 ◽  
Vol 55 (6) ◽  
pp. 849-859 ◽  
Author(s):  
Parveen Chhuneja ◽  
Satinder Kaur ◽  
R. K. Goel ◽  
M. Aghaee-Sarbarzeh ◽  
M. Prashar ◽  
...  

2020 ◽  
Vol 133 (7) ◽  
pp. 2171-2181 ◽  
Author(s):  
Ulrike Beukert ◽  
Guozheng Liu ◽  
Patrick Thorwarth ◽  
Philipp H. G. Boeven ◽  
C. Friedrich H. Longin ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Michał T. Kwiatek ◽  
Waldemar Ulaszewski ◽  
Jolanta Belter ◽  
Dylan Phillips ◽  
Roksana Skowrońska ◽  
...  

Alien chromosome introgression has become a valuable tool to broaden the genetic variability of crop plants via chromosome engineering. This study details the procedure to obtain monosomic addition and monosomic substitution lines of the triticale carrying 2Sk chromosome from Aegilops kotchyi Boiss., which harbors Lr54 + Yr37 leaf and stripe rust-resistant gene loci, respectively. Initially, A. kotschyi × Secale cereale artificial amphiploids (2n = 6x = 42 chromosomes, UUSSRR) were crossed with triticale cv. “Sekundo” (2n = 6x = 42, AABBRR) in order to obtain fertile offspring. Cyto-molecular analyses of five subsequent backcrossing generations revealed that 2Sk chromosome was preferentially transmitted. This allowed for the selection of monosomic 2Sk addition (MA2Sk) lines of triticale. Finally, the 2Sk(2R) substitution plants were obtained by crossing MA2Sk with the nullisomic (N2R) plants of triticale. The presence of 2Sk chromosome in subsequent generations of plants was evaluated using SSR markers linked to Lr54 + Yr37 loci. Disease evaluation of the monosomic 2Sk(2R) substitution plants for the reaction to leaf and stripe rust infection were carried out under controlled conditions in a growth chamber. The results showed significant improvement of leaf rust resistance severity of monosomic substitution plants compared with control (“Sekundo”). In contrast, the introgression of the Lr54 + Yr37 loci did not lead to improvement of stripe rust resistance. In summary, the creation of monosomic addition and monosomic substitution lines of triticale is the starting point for the precise and guided transfer of Lr54 + Yr37 loci. The results showed that the developed materials could be exploited for the development of triticale varieties with resistance to leaf rust.


2010 ◽  
Vol 61 (12) ◽  
pp. 1036 ◽  
Author(s):  
J. Zhang ◽  
C. R. Wellings ◽  
R. A. McIntosh ◽  
R. F. Park

Seedling resistances to stem rust, leaf rust and stripe rust were evaluated in the 37th International Triticale Screening Nursery, distributed by the International Wheat and Maize Improvement Centre (CIMMYT) in 2005. In stem rust tests, 12 and 69 of a total of 81 entries were postulated to carry Sr27 and SrSatu, respectively. When compared with previous studies of CIMMYT triticale nurseries distributed from 1980 to 1986 and 1991 to 1993, the results suggest a lack of expansion in the diversity of stem rust resistance. A total of 62 of 64 entries were resistant to five leaf rust pathotypes. In stripe rust tests, ~93% of the lines were postulated to carry Yr9 alone or in combination with other genes. The absence of Lr26 in these entries indicated that Yr9 and Lr26 are not genetically associated in triticale. A high proportion of nursery entries (63%) were postulated to carry an uncharacterised gene, YrJackie. The 13 lines resistant to stripe rust and the 62 entries resistant to leaf rust represent potentially useful sources of seedling resistance in developing new triticale cultivars. Field rust tests are needed to verify if seedling susceptible entries also carry adult plant resistance.


2017 ◽  
Vol 8 ◽  
Author(s):  
Caixia Lan ◽  
Iago L. Hale ◽  
Sybil A. Herrera-Foessel ◽  
Bhoja R. Basnet ◽  
Mandeep S. Randhawa ◽  
...  

2021 ◽  
Author(s):  
Siwen Wang ◽  
Changyou Wang ◽  
Xianbo Feng ◽  
Jixin Zhao ◽  
Pingchuan Deng ◽  
...  

Abstract Background Owing to the excellent resistance to abiotic and biotic stress, Thionpyrum intermedium (2n = 6x = 42, JJJsJsStSt) and Thinopyrum ponticum (2n = 10x = 70) are both widely utilized in wheat germplasm innovation programs. Disomic substitution lines (DSLs) carrying one pair of alien chromosomes are valuable bridge materials for novel genes transmission, FISH karyotype construction and specific molecular marker development. Results Six wheat–Thinopyrum DSLs derived from crosses between Abbondanza nullisomic lines (2n = 40) and two octoploid Trititrigia lines (2n = 8x = 56), were characterized by a sequential fluorescence in situ hybridization (FISH)–genome in situ hybridization (GISH), a multicolor GISH (mc-GISH), and an analysis of wheat 15K SNP array combined with molecular marker selection. ES-9 (DS2St (2A)) and ES-10 (DS3St (3D)) are wheat–Th. ponticum DSLs, while ES-23 (DS2St (2A)), ES-24 (DS3St (3D)), ES-25(DS2St (2B)), and ES-26 (DS2St (2D)) are wheat–Th. intermedium DSLs. ES-9, ES-23, ES-25 and ES-26 conferred higher thousand-kernel weight and stripe rust resistance at adult stages, while ES-10 and ES-24 performed highly resistant to stripe rust at all stages. Furthermore, cytological analysis showed that the alien chromosomes (2St/3St) belonging to the same homoeologous group derived from different donors carried the same FISH karyotype and could normally form a bivalent. Based on specific-locus amplified fragment sequencing (SLAF-seq), two 2St-chromosome-specific markers (PTH-005 and PTH-013) and two 3St-chromosome-specific markers (PTH-113 and PTH-135) were developed. Conclusions The six wheat–Thinopyrum disomic substitution lines conferring stripe rust resistance will be used as bridging parents for valuable resistant genes transmission. And the utility of PTH-113 and PTH-135 in a BC1F2 population showed the newly developed markers could be useful tools for efficient identification of St chromosomes in a common wheat background.


Sign in / Sign up

Export Citation Format

Share Document