Heavy metals in bulk and particle size fractions from street dust of Kathmandu city as the possible basis for risk assessment

2012 ◽  
Vol 10 (10) ◽  
pp. 84-88 ◽  
Author(s):  
Neena Karmacharya ◽  
Pawan Raj Shakya

Street dust has been sampled from eight major locations of Kathmandu city. The samples were separated into three particle size fractions (<425, 425-600 and >600 ?m) and analyzed for Pb, Cu, Zn and Fe using Atomic Absorption Spectrophotometric method. Results revealed that the bulk samples as well as all particle size fractions under investigation were found to have the metal abundance order as Fe > Zn > Cu > Pb. However, the trace metal concentrations increased with the decrease of dust particle size in all samples. About 35-68% of heavy metals were associated with the small particle size fraction (<425 ?m) and this particle size accounted for 64-81% of the total mass of street dust from all locations. The smaller particle size fraction has a higher heavy metal content, low density, high mobility in runoff, and thus is a higher risk for the residents of Kathmandu city. From the present study, we conclude that a monitoring plan and a suitable risk assessment are necessary to evaluate the evolution of metal concentration in dust in order to develop the proper measures for reducing the risk of inhalation and ingestion of dust for humans and environment. Scientific World, Vol. 10, No. 10, July 2012 p84-88 DOI: http://dx.doi.org/10.3126/sw.v10i10.6869

Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1130
Author(s):  
Qijun Zhang ◽  
Hongjun Mao ◽  
Yanjie Zhang ◽  
Lin Wu

To determine the size distribution and source identification of PM-bound heavy metals in roadside environments, four different particle size (<0.2 μm, 0.2–0.5 μm, 0.5–1.0 μm and 1.0–2.5 μm) samples were collected and analyzed from four different types of roads during the summer of 2015 in Tianjin. The results showed that the concentrations of PM-bound heavy metal from the roadside environment sampling sites were 597 ± 251 ng/m3 (BD), 546 ± 316 ng/m3 (FK), 518 ± 310 ng/m3 (JY) and 640 ± 237 ng/m3 (WH). There were differences in the concentrations of the heavy metal elements in the four different particle size fractions. The concentrations of Cu, Zn, Cd, Sn and Pb were the highest in the larger particle size fraction (0.5–2.5 μm). Cd, Cu, Zn and Pb were the elements that indicated emissions from tire wear and brake pad wear. The concentrations of Cr, Co and Ni were the highest in the smallest particle size fraction (<0.5 μm), indicating that motor vehicle exhaust was their main source. The correlation analysis results showed that there are differences in the concentration, distribution and correlation of different PM-bound heavy metals in different particle size fractions. The PCA results show that the accumulative interpretation variances of PM0.2, PM0.2–0.5, PM0.5–1.0 and PM1.0–2.5 reached 80.29%, 79.56%, 79.57% and 71.42%, respectively. Vehicle exhaust was the primary source of PM-bound heavy metal collected from the roadside sampling sites, while brake pad wear and tire wear were the second most common sources of the heavy metal.


2012 ◽  
Vol 58 (No. 5) ◽  
pp. 242-248 ◽  
Author(s):  
H.W. Scherer ◽  
G. Welp ◽  
S. Förster

A field experiment established in 1962 was chosen to investigate the effect of long-term application of farmyard manure (FYM), compost (COM) and sewage sludge (SS), respectively, in two increments as compared to mineral fertilizer on inorganic and organic S fractions in particle-size separates (&lt; 0.002 mm, 0.002&ndash;0.02 mm, 0.02&ndash;2 mm). Independent of the particle-size the application of the high amounts of COM and SS resulted in the highest total S contents. It is evident that the particle-size fractions &lt; 0.002 mm contained the majority of total soil sulfur (S). The content of plant available S (water-soluble and adsorbed SO<sub>4</sub><sup>2&ndash;</sup>) decreased with increasing particle-size, while the influence of the kind and amount of organic fertilizers was negligible. As compared to C-bonded S sulfate esters were the dominant organic S fraction in size separates. The content of both organic S fractions was highest in the particle-size fraction &lt; 0.002 mm and lowest in the particle-size fraction 0.02&ndash;2 mm. The influence of the application of organic fertilizers was less pronounced. Only high application rates of COM and SS, respectively, resulted in the highest contents of both organic S fractions in the particle-size fractions 0.002&ndash;0.02 mm and 0.02&ndash;2 mm. &nbsp; &nbsp;


2020 ◽  
Vol 13 (7) ◽  
pp. 871-883
Author(s):  
Ping Zhong ◽  
Jia-Quan Zhang ◽  
Da-Mao Xu ◽  
Qian Tian ◽  
Tian-Peng Hu ◽  
...  

2013 ◽  
Vol 779-780 ◽  
pp. 1666-1669
Author(s):  
Xiao Yan Li ◽  
Bao Dong Li

By collecting dust samples from seven different functional areas of Guiyang city, we studied the distribution pattern of the level of Zn in dusts with particle size fractions. The result showed the geometric means of Zn concentration in dusts of Guiyang was 435mg/kg. The Zn in most functional areas was primarily associated with middle particles, while the Zn in industrial area and garbage stations were primarily associated with fine particles.


2011 ◽  
Vol 13 (11) ◽  
pp. 3087 ◽  
Author(s):  
Jose A. Acosta ◽  
Ángel Faz ◽  
Karsten Kalbitz ◽  
Boris Jansen ◽  
Silvia Martínez-Martínez

Revista CERES ◽  
2014 ◽  
Vol 61 (2) ◽  
pp. 265-272 ◽  
Author(s):  
Angélica Cristina Fernandes Deus ◽  
Leonardo Theodoro Büll ◽  
Juliano Corulli Corrêa ◽  
Roberto Lyra Villas Boas

The efficiency of sources used for soil acidity correction depends on reactivity rate (RR) and neutralization power (NP), indicated by effective calcium carbonate (ECC). Few studies establish relative efficiency of reactivity (RER) for silicate particle-size fractions, therefore, the RER applied for lime are used. This study aimed to evaluate the reactivity of silicate materials affected by particle size throughout incubation periods in comparison to lime, and to calculate the RER for silicate particle-size fractions. Six correction sources were evaluated: three slags from distinct origins, dolomitic and calcitic lime separated into four particle-size fractions (2, 0.84, 0.30 and <0.30-mm sieves), and wollastonite, as an additional treatment. The treatments were applied to three soils with different texture classes. The dose of neutralizing material (calcium and magnesium oxides) was applied at equal quantities, and the only variation was the particle-size material. After a 90-day incubation period, the RER was calculated for each particle-size fraction, as well as the RR and ECC of each source. The neutralization of soil acidity of the same particle-size fraction for different sources showed distinct solubility and a distinct reaction between silicates and lime. The RER for slag were higher than the limits established by Brazilian legislation, indicating that the method used for limes should not be used for the slags studied here.


Soil Research ◽  
1986 ◽  
Vol 24 (2) ◽  
pp. 293 ◽  
Author(s):  
RC Dalal ◽  
RJ Mayer

Distribution of soil organic carbon in sand-, silt- and clay-size fractions during cultivation for periods ranging from 20 to 70 years was studied in six major soils used for cereal cropping in southern Queensland. Particle-size fractions were obtained by dispersion in water using cation exchange resin, sieving and sedimentation. In the soils' virgin state no single particle-size fraction was found to be consistently enriched as compared to the whole soil in organic C in all six soils, although the largest proportion (48%) of organic C was in the clay-size fraction; silt and sand-size fractions contained remaining organic C in equal amounts. Upon cultivation, the amounts of organic C declined from all particle-size fractions in most soils, although the loss rates differed considerably among different fractions and from the whole soil. The proportion of the sand-size fraction declined rapidly (from 26% to 12% overall), whereas that of the clay-size fraction increased from 48% to 61% overall. The proportion of silt-size organic C was least affected by cultivation in most soils. It was inferred, therefore, that the sand-size organic matter is rapidly lost from soil, through mineralization as well as disintegration into silt-size and clay-size fractions, and that the clay fraction provides protection for the soil organic matter against microbial and enzymic degradation.


2021 ◽  
Vol 10 (2) ◽  
pp. 123-131
Author(s):  
Anto JELECEVİC ◽  
Manfred SAGER ◽  
Daniel VOLLPRECHT ◽  
Markus PUSCHENREİTER ◽  
Peter LİEBHARD

Clay Minerals ◽  
1992 ◽  
Vol 27 (1) ◽  
pp. 47-55 ◽  
Author(s):  
M. Hardy

AbstractAn XRD method for measurement of quartz content using ZnO as the internal standard was tested on different particle sizes between 0 and 20 µm. Calibration curves showed a good correlation coefficient for particle-size fractions up to 20 µm; the slope increased for the fractions from 0·7 to 5 µm and was relatively constant for coarser particle sizes. Fine quartz fractions were etched with hydrofluoric acid to remove the surface layer damaged during dry grinding. The use of such etched quartz increased the slopes of the calibration curves for small particle-size fractions and approximated the natural fine quartz fraction much better than the original dry-ground material. The mean of six measurements gave good accuracy provided that the slope of the calibration curve was adjusted for the particular particle-size fraction. This method was used on 0–2 µm, 0–0·2µm and 0·2–2 µm fractions of French silty soils and the results are in agreement with the data from chemical analysis and with the mineralogical interpretation.


Sign in / Sign up

Export Citation Format

Share Document