Small Grains Disease Management

2021 ◽  
Author(s):  
Andrew Friskop ◽  
Gary Bergstrom ◽  
Carl Bradley ◽  
Nathan Kleczewski ◽  
Juliet Marshall ◽  
...  
2006 ◽  
Vol 7 (1) ◽  
pp. 14 ◽  
Author(s):  
Charla R. Hollingsworth ◽  
Christopher D. Motteberg ◽  
Research Assistant ◽  
W. Galen Thompson

Small grains crop yield and quality losses resulting from Fusarium head blight (FHB) continue to threaten the economic sustainability of many small grains producers in Minnesota. Spring wheat breeders have made some progress in developing cultivars with moderate levels of disease resistance, but increased resistance in barley has not been achieved. Crop rotation and a timely application of fungicide remain the most important disease management strategies for managing the disease on both cropping species. Fungicide efficacy trials were conducted during 2003 and 2004 to compare the current industry standard (tebuconazole) efficacy with those of two experimental fungicides. Experimental products with active ingredients of metconazole or tebuconazole + prothioconazole significantly reduced percent FHB severity of spring wheat. Disease severity means with these experimentals averaged 28.5% less than tebuconazole, and percent visually scabby kernel means were 47% less with the experimentals compared with tebuconazole. Results were not as definitive for spring barley. Numerical trends from fungicide treatments were similar to those in spring wheat, but data were not statistically significant. These data indicate increased FHB management in Minnesota can be expected when experimental fungicides with active ingredients of metconazole or prothioconazole are registered for use on spring wheat by the EPA. The results for spring barley emphasize the urgency of achieving an effective disease management strategy for FHB and underscore the need for additional research on the disease in Upper Midwest states. Accepted for publication 29 May 2006. Published 6 September 2006.


1984 ◽  
Vol 75 ◽  
pp. 203-209
Author(s):  
Joseph A. Burns

ABSTRACTLying in Jupiter's equatorial plane is a diaphanous ring having little substructure within its three components (main band, faint disk, and halo). Micron-sized grains account for much of the visible ring, but particles of centimeter sizes and larger must also be present to absorb charged particles. Since dynamical evolution times and survival life times are quite short (≲102-3yr) for small grains, the Jovian ring is being continually replenished; probably most of the visible ring is generated by micrometeoroids colliding into unseen parent bodies that reside in the main band.


Sign in / Sign up

Export Citation Format

Share Document