disease management strategy
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 16)

H-INDEX

8
(FIVE YEARS 2)

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 105
Author(s):  
Eliza Rocha Gomes ◽  
Marina Santiago Franco

Cancer is responsible for a significant proportion of death all over the world. Therefore, strategies to improve its treatment are highly desired. The use of nanocarriers to deliver anticancer treatments has been extensively investigated and improved since the approval of the first liposomal formulation for cancer treatment in 1995. Radiotherapy (RT) is present in the disease management strategy of around 50% of cancer patients. In the present review, we bring the state-of-the-art information on the combination of nanocarrier-assisted delivery of molecules and RT. We start with formulations designed to encapsulate single or multiple molecules that, once delivered to the tumor site, act directly on the cells to improve the effects of RT. Then, we describe formulations designed to modulate the tumor microenvironment by delivering oxygen or to boost the abscopal effect. Finally, we present how RT can be employed to trigger molecule delivery from nanocarriers or to modulate the EPR effect.


Author(s):  
J.D. Duff ◽  
M.C. Firrell

Brassica biofumigant cover crops are being increasingly considered in vegetable crop rotations as part of an integrated disease management strategy and simply as a cover cropping choice. Nine biofumigant varieties were assessed to see if they could be grown year-round in the Lockyer Valley South East Queensland region, for yield, days to incorporation and glucosinolate concentrations, as well as efficacy against 3 soilborne pathogens; Sclerotinia sclerotiorum, Sclerotium rolfsii and Macrophomina phaseolina. The fastest growing brassica biofumigant was BQ Mulch which reached 25% flowering in 36 and 59 days from planting to incorporation with a summer and winter planting respectively. Nemcon and Nemclear took the longest to incorporation when planted in summer, 101 days and failed to flower, while Caliente, Tillage Radish and Biofum reached 25% flowering and incorporation in 98 days when planted in winter. BQ Mulch produced the least amount of biomass, 30.93 t/ha fresh weight and 2.92 t/ha dry weight with a summer planting. Biofum producing the greatest amount of biomass, 185.76 t/ha fresh weight and 17.34 t/ha dry weight with a summer and winter planting respectively. Most varieties produced more total glucosinolates during summer compared to winter. Caliente produced the highest levels of Total GSLs with 53.47 µmol/g DW in summer compared to 23.78 µmol/g DW in winter. This was reflected in their efficacy against the soilborne pathogens. Caliente and Mustclean were more efficacious at controlling Macrophomina and Sclerotinia in summer compared to winter while all varieties were more efficacious at controlling Sclerotinia with a summer planting compared to a winter planting.


Author(s):  
N. Mohamed Arsath ◽  
N. P. Muralidharan

Introduction: Covid 19 is primarily a pneumonia associated viral infection that originated from Wuhan city in December 2019.The spread of novel coronavirus occurs through direct close contact with COVID-19 patients within one metre of the infected person and the rate of spread is enhanced especially if they do not cover their face when coughing or sneezing. The novel virus also spreads by the droplets surviving on surfaces and clothes for many days. The current study focuses on analysing the vulnerability of the dental population to covid19, and the study also deals with analysis of the knowledge among the dentists regarding the diagnosis, prevention and treatment protocols of Covid19. Materials And Method: A manual survey was conducted with the self structured questionnaire prepared using google docs. An total of 1000 responses were received. The responses recorded were analysed and statistical analysis was performed Results: The current survey results depict that around 97.14% of the participants were [1] [2] affected with covid19 and among them around 74.23% of the population did not get admitted in hospital and self quarantined themselves and took nutrition rich diet to recover from covid19 infection. Conclusion: The study results within the limitation depicted that there is adequate awareness,knowledge on all aspects with regards to the pandemic outbreak novel corona virus. Study also shows the vulnerability of dentists in any community outbreak of any size.it also shows the disease management strategy handled by the local community.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1797 ◽  
Author(s):  
Arthy Surendran ◽  
Yasmeen Siddiqui ◽  
Khairulmazmi Ahmad ◽  
Rozi Fernanda

The threat of Ganoderma boninense, the causal agent of basal stem rot disease, in the oil palm industry warrants finding an effective control for it. The weakest link in the disease management strategy is the unattended stumps/debris in the plantations. Hence, this study aimed to determine whether the selected phenolic compounds could control G. boninense in inoculated oil palm woodblocks and restrict wood biodegradation. Results indicated a significant reduction in the wood mass loss when treated with all the phenolic compounds. Surprisingly, syringic and vanillic acids behaved ambivalently; at a lower concentration, the wood mass loss was increased, but it decreased as the concentrations were increased. In all four phenolic compounds, the inhibition of mass loss was dependent on the concentration of the compounds. After 120 days, the mass loss was only 31%, with 63% relative degradation of lignin and cellulose, and 74% of hemicellulose and wood anatomy, including silica bodies, were intact in those woodblocks treated with 1 mM benzoic acid. This study emphasizes the physicochemical and anatomical changes occurring in the oil palm wood during G. boninense colonization, and suggests that treating oil palm stumps with benzoic acid could be a solution to reducing the G. boninense inoculum pressure during replantation in a sustainable manner.


2021 ◽  
Vol 13 (16) ◽  
pp. 9353 ◽  
Author(s):  
Julissa Alexandra Galarza-Villamar ◽  
Mariette McCampbell ◽  
Andres Galarza-Villamar ◽  
Cees Leeuwis ◽  
Francesco Cecchi ◽  
...  

This article is the second in a series of two and presented findings from field-testing an experimental boardgame (Musa-game) with banana farmers in four villages in Eastern Rwanda. The conceptualization and design of the Musa-game were described in Part I. Musa-game gives insights into how farmers’ individual and collective decision-making and actions regarding management of a public bad interplay with other factors and characteristics of the socio-ecological system (SES). A public bad is a non-rivalrous, non-excludable issue that causes loss of social-welfare of individuals and communities. The method contributes contextual understanding about the emergence of phenomena that arise from the interactions between human and non-human actors. Musa-game was framed to study one public bad challenge in particular: the infectious crop disease Banana Xanthomonas Wilt disease (BXW). Findings increased the knowhow about the emergence and governance of conditions that hinder or enhance the spread of infectious diseases like BXW. Analysis of qualitative and quantitative data suggested that individual farmers’ actions were influenced by perceptions of risk, affecting both individual and collective disease management. Additionally, the used experimental treatments allowed us to evaluate the influence of communication on risk-governance strategies. It appears that a combination of possession of technical knowledge about the disease, opportunities to communicate about the disease, and a collective disease management strategy enables the best individual actions and collective performance.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Do Quang Trung ◽  
Luu The Anh ◽  
Nguyen Thi Thuy ◽  
Dinh Mai Van ◽  
Tran Thi Hang

Abstract Background Stem end rot (SER) disease caused by Alternaria alternata is one of the main fungal diseases in pitaya and other crops in Nam Dinh, Vietnam, that leads to extensive yield and economic losses. Biocontrol of SER, using endophytic bacteria, is environmentally friendly and compatible with other control measures. Hence, it is emerging as an alternative disease management strategy in sustainable agriculture. This study aimed to screen antagonistic bacteria isolated from the weed, Eleusine indica, with the potential to manage SER. Results A total of 16 endophytes were isolated from the stems, leaves, and roots of the weed, E. indica. Of those, 6 strains presented antagonistic effects against A. alternata growth, and one isolate, EI-15, showed a significant inhibitory effect on SER. In addition, analyzing the 16S rDNA sequence indicated that EI-15 was a strain of Bacillus amyloliquefaciens. Moreover, the results of the antagonistic spectrum assay showed that EI-15 significantly inhibited some plant and fruit tree pathogens, especially the suppression of A. alternata. Notably, the culture filtrate of strain EI-15 exhibited in vitro apparent activity against A. alternata. Furthermore, an in vivo antagonistic experiment of EI-15 on pitaya twig showed a significant reduction of lesion on twigs than the control. Conclusions Overall, this study suggested the potential application of the EI-15 strain as a biological agent and needs to be further studied in the field to control SER.


2020 ◽  
Author(s):  
Leandro José Dallagnol ◽  
Andrea Elizabeth Román Ramos ◽  
Keilor da Rosa Dorneles

Silicon (Si) is a benefic element for higher plants such as wheat (Triticum aestivum) in which it is accumulated in the shoot tissues. In this crop, leaf diseases and spike diseases are the cause of yield losses, and therefore several studies had been conducted under field and greenhouse conditions to demonstrate that plants supplied with Si reduced most of the diseases damage due to the amelioration of the plant defenses. However, the benefits of Si depend on its accumulation in the plant’s tissue, which is influenced by the availability of the element in the soil as well as the up-take ability of the wheat cultivar. In this chapter we present the current knowledge about the mechanisms of Si absorption and its accumulation in different tissues of the wheat plant, the most studied options for silicate fertilization, and the benefits of Si on grain yield. We also present some insight of the effect of Si-supply in wheat on the reduction of main leaf and ear diseases, bringing evidence and explanation of the defense mechanisms involved. In addition, we provide an overview of the Si effect on the physiology (gas exchange, chlorophyll a fluorescence and carbohydrate metabolism) of the wheat plant. Finally, questions have been raised about the Si uses as fertilizer that still needs to be answered. We recognized that some studies have enhanced our understanding of Si providing evidence of the Si use as disease management strategy, but further research is needed to make the Si uses a simple task for wheat growers under field condition.


Plant Disease ◽  
2020 ◽  
Author(s):  
Sheng-Ren Sun ◽  
Jian-Sheng Chen ◽  
Er-Qi He ◽  
Mei-Ting Huang ◽  
Hua-Ying Fu ◽  
...  

Maize yellow mosaic virus (MaYMV) hosted in various gramineous plants was assigned to the genus Polerovirus (family Luteoviridae) in 2018. However, little is known about its genetic diversity and population structure. In this study, 509 sugarcane leaf samples with mosaic symptoms were collected in 2017-2019 from eight sugarcane-growing provinces in China. RT-PCR results revealed that four positive-sense RNA viruses were found to infect sugarcane, and the incidence of MaYMV among samples from Fujian, Sichuan, and Guangxi provinces was 52.1%, 9.8%, and 2.5%, respectively. Based on 82 partial MaYMV sequences and 46 whole-genome sequences from different host plants, phylogenetic analysis revealed that MaYMV populations are very closely associated with their source geographical regions (China, Africa, and South America). Pairwise identity analysis showed significant variability in genome sequences among MaYMV isolates with genomic nucleotide identities of 91.1-99.9%. In addition to codon mutations, insertions/deletions also contributed to genetic variability in individual coding regions, especially in the readthrough protein (P3-P5 fusion protein). Low gene flow and significant genetic differentiation of MaYMV were observed among the three geographical populations, suggesting that environmental adaptation is an important evolutionary force that shapes the genetic structure of MaYMV. Genes in the MaYMV genome were subject to strong negative or purification selection during evolution, except for the movement protein (MP), which was under positive selection pressure. This finding suggests that the MP may play an important role in MaYMV evolution. Taken together, our findings provide basic information for the development of an integrated disease management strategy against MaYMV.


Plant Disease ◽  
2020 ◽  
Author(s):  
Swarnalatha Moparthi ◽  
Mary Eileen Burrows ◽  
Josephine Mgbechi-Ezeri ◽  
Bright Agindotan

Root rot caused by Fusarium species is a major problem in the pulse growing regions of Montana. Fusarium isolates (n=112) were obtained from seeds and/or roots of chickpea, dry pea, and lentil. Isolates were identified by comparing the sequences of the internal transcribed spacer region and the translation elongation factor 1-α in Fusarium-ID database. Fusarium avenaceum was the most abundant species (28%), followed by F. acuminatum (21%), F. poae (13%), F. oxysporum (8%), F. culmorum (6%), F. redolens (6%), F. sporotrichioides (6%), F. solani (4%), F. graminearum (2%), F. torulosum (2%) and F. tricinctum (0.9%). The aggressiveness of a subset of 50 isolates that represent various sources of isolation was tested on three pulse crops and two cereal crops. Nonparametric analysis of variance conducted on ranks of disease severity indicated that F. avenaceum and F. solani isolates were highly aggressive on pea and chickpea. In lentil, F. avenaceum and F. culmorum were highly aggressive. In barley, F. avenaceum, F. solani, F. culmorum, and F. graminearum were highly aggressive. In wheat, F. avenaceum, F. graminearum, and F. culmorum were highly aggressive. Two F. avenaceum isolates were highly aggressive across all the crops tested and found to be cross pathogenic. One isolate of F. culmorum and an isolate of F. graminearum obtained from chickpea and lentil seed were highly aggressive on barley and wheat. The results indicate that multiple Fusarium spp. from seeds and roots can cause root rot on both pulse and cereal crops. Rotating these crops may still lead to an increase in inoculum levels, making crop rotation limited in efficacy as a disease management strategy.


Sign in / Sign up

Export Citation Format

Share Document