scholarly journals Changes in soil phosphorus in different forest residue management

2012 ◽  
Vol 16 (3) ◽  
2020 ◽  
Vol 475 ◽  
pp. 118443
Author(s):  
Liamara Santos Masullo ◽  
Alexandre de Vicente Ferraz ◽  
José Leonardo de Moraes Gonçalves ◽  
Luís Eduardo Aranha Camargo ◽  
Patrícia Andressa de Ávila ◽  
...  

2022 ◽  
Vol 506 ◽  
pp. 119954
Author(s):  
Liamara Santos Masullo ◽  
Alexandre de Vicente Ferraz ◽  
José Henrique Tertulino Rocha ◽  
Gabriel de Castilho Valdo ◽  
Patrícia Andressa de Ávila ◽  
...  

1990 ◽  
Vol 38 (1-2) ◽  
pp. 13-25 ◽  
Author(s):  
M.A. Bekunda ◽  
P.J. Smethurst ◽  
P.K. Khanna ◽  
I.R. Willett

2019 ◽  
Vol 65 (No. 8) ◽  
pp. 408-415 ◽  
Author(s):  
Xiaozhu Yang ◽  
Xuelian Bao ◽  
Yali Yang ◽  
Yue Zhao ◽  
Chao Liang ◽  
...  

The migration and transformation of soil phosphorus (P) are essential for agricultural productivity and environmental security but have not been thoroughly elucidated to date. A 10-year field study was conducted to explore the effects of conventional tillage (CT) and no-tillage with maize residue management (NT-0, NT-33%, NT-67% and NT-100%) on P contents and phosphatase activities in soil layers (0–5, 5–10, 10–20 and 20–40 cm). The results showed that soil available P content and phosphatase activities were higher in no-tillage with maize residue than CT. Soil moisture and pH were significantly positively correlated with soil available P. Higher organic P contents and lower inorganic P contents in the 0–5 cm soil layer were found in the treatment NT-67% compared with other treatments. According to the structure equation model, the source of available P was inorganic P in NT-33%, while organic P in NT-67%. This study demonstrated that the variation of dominant mechanisms involved in soil P migration and transformation were dependent on residue input amounts, and NT-67% might play an important role in the maintenance and transformation of soil organic P.


Agronomie ◽  
2002 ◽  
Vol 22 (7-8) ◽  
pp. 777-787 ◽  
Author(s):  
Graeme D. Schwenke ◽  
Warwick L. Felton ◽  
David F. Herridge ◽  
Dil F. Khan ◽  
Mark B. Peoples

2005 ◽  
Vol 52 (4) ◽  
pp. 369-379
Author(s):  
B. G. Shivakumar ◽  
B. N. Mishra ◽  
R. C. Gautam

A field experiment on a greengram-wheat cropping sequence was carried out under limited water supply conditions in 1997-98 and 1998-99 at the farm of the Indian Agricultural Research Institute, New Delhi. The greengram was sown either on flat beds or on broad beds 2 m in width, divided by furrows, with 0, 30 and 60 kg P2O5/ha. After the harvest of greengram pods, wheat was grown in the same plots, either with the greengram stover removed or with the stover incorporated along with 0, 40, 80 and 120 kg N/ha applied to wheat. The grain yield of greengram was higher when sown on broad beds with furrows compared to flat bed sowing, and the application of 30 or 60 kg P2O5/ha resulted in significantly higher grain yields compared to no phosphorus application. The combination of broad bed and furrows with phosphorus fertilization was found to be ideal for achieving higher productivity in greengram. The land configuration treatments had no impact on the productivity of wheat. The application of phosphorus to the preceding crop had a significant residual effect on the grain yield of wheat. The incorporation of greengram stover also significantly increased the grain yield of wheat. The increasing levels of N increased the grain yield of wheat significantly up to 80 kg/ha. The combination of greengram stover incorporation and 80 kg N/ha applied to wheat significantly increased the grain yield. Further, there was a significant interaction effect between the phosphorus applied to the preceding crop and N levels given to wheat on the grain yield of wheat.


2019 ◽  
Vol 103 (1) ◽  
pp. 43-45 ◽  
Author(s):  
Carlos Crusciol ◽  
João Rigon ◽  
Juliano Calonego ◽  
Rogério Soratto

Some crop species could be used inside a cropping system as part of a strategy to increase soil P availability due to their capacity to recycle P and shift the equilibrium between soil P fractions to benefit the main crop. The release of P by crop residue decomposition, and mobilization and uptake of otherwise recalcitrant P are important mechanisms capable of increasing P availability and crop yields.


2009 ◽  
Vol 17 (5) ◽  
pp. 885-889
Author(s):  
Wan-Tai YU ◽  
Zi-Shao JIANG ◽  
Qiang MA ◽  
Hua ZHOU
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document