scholarly journals EXPERIMENTAL STUDY ON INDOOR THERMAL ENVIRONMENT OF FLOOR-SUPPLY DISPLACEMENT VENTILATION SYSTEM UNDER VARIOUS HEAT LOAD CONDITIONS

1998 ◽  
Vol 63 (507) ◽  
pp. 27-34 ◽  
Author(s):  
Takashi AKIMOTO ◽  
Junta NAKANO ◽  
Shin-ichi TANABE ◽  
Ken-ichi KIMURA
Author(s):  
Edgar C. Ambos ◽  
Evan Neil V. Ambos ◽  
Lanndon A. Ocampo

Due to its significant role in improving indoor air quality, displacement ventilation system is widely adopted in current literature. This paper proposes a displacement ventilation system for room conditions with ceilings that are relatively low, internal heat load could be high, walls could be sunlit, and occupants doing the low physical activity. These conditions are prevalent in the Philippines, being a tropical country. Input parameters to the design process such as heat load, the height of the ceiling, comfort, and indoor air quality requirements were generated, and the main output parameters are the stratification height and ventilation airflow rate. To demonstrate the proposed displacement ventilation system, four cases were generated. Results show that the ventilation airflow rates obtained from the four cases were greater than the minimum outdoor air requirements for health in conference rooms and large assembly areas which are 17.5 and 3.5 liters/sec*person respectively, for smoking and no smoking rooms.


2019 ◽  
Vol 111 ◽  
pp. 01085
Author(s):  
Hiroshi Muramatsu ◽  
Tatsuo Nobe

In this study, an office building in Japan that incorporates energy-saving features and environmental technologies was investigated. This office building features a green façade, natural ventilation, a concrete slab with no suspended ceilings, and thermo-active building systems. Two airconditioning systems were installed in this building—a ceiling radiation air-conditioning system and a whole floor-blow off air conditioning system. In addition, a natural ventilation system was installed. We surveyed the heat flux of the ceiling surface and indoor thermal environment of this building from 2015 through 2016. The ceiling using the heat storage amount of concrete maintains a constant temperature in the workplace during as well as after office hours. We also performed detailed measurements of the heat flux of the ceiling surface and indoor thermal environment in the summer of 2017. The results showed that the ceiling radiation air-conditioning system provided a stable thermal environment. Furthermore, we report that making use of the thermal behavior of the skeleton improved the operation of the ceiling radiation airconditioning system.


2021 ◽  
Vol 881 (1) ◽  
pp. 012023
Author(s):  
Muslimsyah ◽  
A Munir ◽  
Y Away ◽  
Abdullah ◽  
K Huda ◽  
...  

Abstract Thermal comfort is one of the standard assessments of building thermal environment. Air movement is an important parameter for in a naturally ventilated to achieve thermal comfort by accelerating the evaporative cooling process on the human body. Aceh House has a standard of thermal comfort with a vernacular architecture with a natural ventilation system. This vernacular architectural building has a fairly high harmonization of the environment because it has undergone a process of adaptation. In this study, observations were made at the Original House (OH), the Adaptive Reuse House (ARH), and the Aceh Modified House (AMH). By using the method of assessing changes in environmental comfort, using Wet Bulb Temperature Index (WBGT) method, the minimum and maximum temperature ranges are 25°C and 30°C. In the WBGT thermal rating, AMH has the higher thermal and is followed by ARH and OH respectively. Thus, OH has lower thermal compared to other Aceh houses.


Author(s):  
Wisam A. M. Al-Shohani ◽  
Ahmed Qasim Ahmed ◽  
Ahmed Jawad Khaleel ◽  
Hassan J. Dakkama ◽  
Tareq Hamid Fayyad

Sign in / Sign up

Export Citation Format

Share Document