Assessment of thermal environment using a thermal manikin in a field environment chamber served by displacement ventilation system

2006 ◽  
Vol 41 (12) ◽  
pp. 1661-1670 ◽  
Author(s):  
K.W.D. Cheong ◽  
W.J. Yu ◽  
R. Kosonen ◽  
K.W. Tham ◽  
S.C. Sekhar
2021 ◽  
Vol 2069 (1) ◽  
pp. 012096
Author(s):  
Wenyu Lin ◽  
Tao Zhang ◽  
Xiaohua Liu ◽  
Lingshan Li

Abstract It is important to strictly maintain the indoor thermal environment in ice arenas which have very different features to other commercial buildings. Separated air distribution system is widely used to create a dry and cold environment near the ice and a comfortable environment in the view stand. The warm and humid air from the view stand may lead to uneven temperature and humidity distribution in the rink, leading to extra energy consumption, even fog and frost on the ice. Unreasonable air supply in the ice rink zone will also make the spectators feel too cold and uncomfortable. Jet ventilation system is the most extensively used system in the ice rink zone. An innovative ground displacement ventilation system is proposed in the National Aquatics Centre, which will serve as the venue for the curling competition in the 2022 Beijing Winter Olympics. On-site measurement in the arena is carried out and computational fluid dynamics (CFD) simulation method is adopted in the present research. Measured thermal environment above the ice with different ventilation systems are compared and analysed. Result shows that the displacement ventilation system features a more obvious vertical stratification than jet ventilation system in this kind of large space buildings, and thus is more energy-efficient. A CFD model of the ice cube is setup and verified by measured data. The thermal environment in the ice rink with displacement ventilation under extreme condition is studied using the simulation method. The temperature and humidity in the ice field increases by 10.1 °C, 4.5 g/kg without air supply in the view stand, proving that the spectators in the view stand have a great impact on the thermal environment in the ice field.


Author(s):  
Douaa Al Assad ◽  
Kamel Ghali ◽  
Nesreen Ghaddar ◽  
Elvire Katramiz

Abstract The aim of this work is to evaluate the performance of an intermittent personalized ventilation (IPV) system assisting a displacement ventilation (DV) system to improve thermal comfort and save energy. This will be conducted by developing a transient 3D computational fluid dynamics (CFD) model of an occupied office space equipped with systems. The occupant is modeled by a heated thermal manikin replicating the human body. The CFD model is coupled with a transient bio-heat model to compute segmental skin temperatures and their rate of change. The latter are taken as input into Zhang’s comfort model to predict and overall thermal comfort. The model was used to conduct a case study, where the overall thermal comfort and energy savings will be assessed for the IPV + DV These results will be compared with those of steady personalized ventilation (PV) + DV and standalone DV systems. By varying the IPV frequency in the typical indoor range of [0.3 Hz – 1 Hz], it was found that the IPV + DV system was able to enhance comfort compared to steady PV + DV and a standalone DV. In addition, an energy analysis was conducted and it was shown that the IPV was able to achieve considerable energy savings compared to a steady PV + DV at the same thermal comfort level. Moreover, relaxing the DV supply temperature to higher occupied zone temperatures, can provide additional energy savings while still maintaining comfort levels in the space.


Sign in / Sign up

Export Citation Format

Share Document