environment chamber
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 22)

H-INDEX

16
(FIVE YEARS 3)

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7182
Author(s):  
Jong Won Lee ◽  
Sang Hyuk Lee ◽  
Young Il Jang ◽  
Hee Mun Park

The use of titanium dioxide in concrete block pavements is a promising approach to reduce air pollution in the roadside. When TiO2 is used as an additive of cement concrete or mortar, it is not dispersed uniformly due to agglomeration between particles causing the degradation of photocatalytic reaction. To improve the photocatalytic performance of TiO2, the Nano SiO2-TiO2 (NST) has been developed by coating TiO2 with SiO2 as a support using the sol-gel method. The environmental performance of concrete blocks incorporating NST as an additive was evaluated using both laboratory and full-scale chamber experiments. It was observed from laboratory environment chamber testing that the NO reduction efficiency of concrete blocks with 4% NST ranged from 16.5 to 59.1%, depending on the UV intensity. Results of the full-scale chamber test on NST concrete blocks indicated that the NO and SO2 reduction efficiencies were 22.3% and 14.4% at a 564W/m2 of solar radiation, respectively. It was found that the increase in UV intensity and solar radiation had a positive effect on decreasing NO and SO2 concentration. In the future, the NST will be applied at in-service photocatalytic block pavements to validate the environmental performance in field conditions.


Aerospace ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 359
Author(s):  
Victor Norrefeldt ◽  
Gerhard Riedl

Aircraft insulation separates the thermally comfortable cabin interior environment from the extremely cold outside conditions. However, the fabrication and installation of the insulation in the aircraft is a labor-intensive task. Tailored, rigid particle foam parts could be a solution to speed up the installation process. The presented study investigates the feasibility of such a concept from a hygrothermal point of view. Due to the temperature difference between the cold air trapped between aircraft skin and insulation on one side and the warm cabin air on the other side, a buoyancy-induced pressure difference forms. This effect drives the warmer air through leakages in the insulation system towards the cold skin. Here, moisture contained in the air condenses on the cold surfaces, increasing the risk for uncontrolled dripping (“rain in the plane”) when it melts. Therefore, this study compares the condensate build-up of different installations of a rigid particle foam frame insulation with the classical glass fiber capstrip. Tests are hosted in the Fraunhofer Lining and Insulation Test Environment chamber. It is shown that careful installation of the particle foam frame insulation provides similar level of moisture protection as the current state of the art insulation, and that the condensate amount does not depend on the amount of airflow directly behind the sidewall.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6664
Author(s):  
Dan Hofstetter ◽  
Eileen Fabian ◽  
A. Gino Lorenzoni

An ammonia gas (NH3) generator was developed to maintain a set concentration of ammonia gas in a controlled environment chamber to study poultry physiological responses to sustained elevated levels of ammonia gas. The goal was to maintain 50 parts per million (ppm) of ammonia gas in a 3.7 m × 4.3 m × 2.4 m (12 ft × 14 ft × 8 ft) controlled environment chamber. The chamber had a 1.5 m3/s (3000 cfm) recirculation system that regulated indoor temperature and humidity levels and a 0.06 m3/s (130 cfm) exhaust fan that exchanged indoor air for fresh outdoor air. The ammonia generator was fabricated by coupling ultrasonic humidifiers with an Arduino-based microcontroller and a metallic oxide MQ-137 ammonia gas sensor. Preliminary evaluation under steady conditions showed the average MQ-137 gas sensor accuracy was within 1.4% of the 65.4 ppm concentration measured using a highly accurate infrared gas analyzer. Further evaluation was performed for a setpoint concentration of 50 ppm where ammonia generator reservoirs were filled with 2% or 10% ammonia liquid. For the system tested, it was found that two generators operating at the same time filled with 3.8 L (1.0 gallon) of 2% ammonia cleaning liquid each (7.6 L or 2.0 gallons total) could maintain a gas level of 49.45 ± 0.79 ppm in the chamber air for a duration of 30 h before refilling was required. One generator filled with 3.8 L of 10% ammonia cleaning liquid could maintain 51.24 ± 1.53 ppm for 195 h. Two ammonia generators were deployed for a six-week animal health experiment in two separate controlled environment chambers. The two ammonia generators maintained an average ammonia concentration of 46.42 ± 3.81 ppm and 45.63 ± 4.95 ppm for the duration of the experiment.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 921
Author(s):  
Jim Stevens ◽  
Matthew Alan Jones ◽  
Tracy Lawson

Climate change from elevated [CO2] may reduce water availability to crops through changes in precipitation and higher temperatures. However, agriculture already accounts for 70% of human consumption of water. Stomata, pores in the leaf surface, mediate exchange of water and CO2 for the plant. In crops including barley, the speed of stomatal response to changing environmental conditions is as important as maximal responses and can thus affect water use efficiency. Wild barleys and landraces which predate modern elite lines offer the breeder the potential to find unexploited genetic diversity. This study aimed to characterize natural variation in stomatal anatomy and leaf physiology and to link these variations to yield. Wild, landrace and elite barleys were grown in a polytunnel and a controlled environment chamber. Physiological responses to changing environments were measured, along with stomatal anatomy and yield. The elite barley lines did not have the fastest or largest physiological responses to light nor always the highest yields. There was variation in stomatal anatomy, but no link between stomatal size and density. The evidence suggests that high photosynthetic capacity does not translate into yield, and that landraces and wild barleys have unexploited physiological responses that should interest breeders.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2519
Author(s):  
Zhongchen Wu ◽  
Zongcheng Ling ◽  
Jiang Zhang ◽  
Xiaohui Fu ◽  
Changqing Liu ◽  
...  

Laboratory simulation is the only feasible way to achieve Martian environmental conditions on Earth, establishing a key link between the laboratory and Mars exploration. The mineral phases of some Martian surface materials (especially hydrated minerals), as well as their spectral features, are closely related to environmental conditions. Therefore, Martian environment simulation is necessary for Martian mineral detection and analysis. A Mars environment chamber (MEC) coupled with multiple in situ spectral sensors (VIS (visible)-NIR (near-infrared) reflectance spectroscopy, Raman spectroscopy, laser-induced breakdown spectroscopy (LIBS), and UV-VIS emission spectroscopy) was developed at Shandong University at Weihai, China. This MEC is a comprehensive research platform for Martian environmental parameter simulation, regulation, and spectral data collection. Here, the structure, function and performance of the MEC and the coupled spectral sensors were systematically investigated. The spectral characteristics of some geological samples were recorded and the effect of environmental parameter variations (such as gas pressure and temperature) on the spectral features were also acquired by using the in situ spectral sensors under various simulated Martian conditions. CO2 glow discharge plasma was generated and its emission spectra were assigned. The MEC and its tested functional units worked well with good accuracy and repeatability. China is implementing its first Mars mission (Tianwen-1), which was launched on 23 July 2020 and successfully entered into a Mars orbit on 10 February 2021. Many preparatory works such as spectral databases and prediction model building are currently underway using MECs, which will help us build a solid foundation for real Martian spectral data analysis and interpretation.


2021 ◽  
Vol 87 (10) ◽  
Author(s):  
Ming-Yi Chou ◽  
Smita Shrestha ◽  
Renee Rioux ◽  
Paul Koch

ABSTRACT Dollar spot, caused by the fungal pathogen Clarireedia spp., is an economically important foliar disease of amenity turfgrass in temperate climates worldwide. This disease often occurs in a highly variable manner, even on a local scale with relatively uniform environmental conditions. The objective of this study was to investigate mechanisms behind this local variation, focusing on contributions of the soil and rhizosphere microbiome. Turfgrass, rhizosphere, and bulk soil samples were collected from within a 256-m2 area of healthy turfgrass, transported to a controlled environment chamber, and inoculated with Clarireedia jacksonii. Bacterial communities were profiled by targeting the 16S rRNA gene, and 16 different soil chemical properties were assessed. Despite their initial uniform appearance, the samples differentiated into highly susceptible and moderately susceptible groups following inoculation in the controlled environment chamber. The highly susceptible samples harbored a unique rhizosphere microbiome with suggestively lower relative abundance of putative antibiotic-producing bacterial taxa and higher predicted abundance of genes associated with xenobiotic biodegradation pathways. In addition, stepwise regression revealed that bulk soil iron content was the only significant soil characteristic that positively regressed with decreased dollar spot susceptibility during the peak disease development stage. These findings suggest that localized variation in soil iron induces the plant to select for a particular rhizosphere microbiome that alters the disease outcome. More broadly, further research in this area may indicate how plot-scale variability in soil properties can drive variable plant disease development through alterations in the rhizosphere microbiome. IMPORTANCE Dollar spot is the most economically important disease of amenity turfgrass, and more fungicides are applied targeting dollar spot than any other turfgrass disease. Dollar spot symptoms are small (3 to 5 cm), circular patches that develop in a highly variable manner within plot scale even under seemingly uniform conditions. The mechanism behind this variable development is unknown. This study observed that differences in dollar spot development over a 256-m2 area were associated with differences in bulk soil iron concentration and correlated with a particular rhizosphere microbiome. These findings provide interesting avenues for future research to further characterize the mechanisms behind the highly variable development of dollar spot, which may inform innovative control strategies. Additionally, these results suggest that small changes in soil properties can alter plant activity and hence the plant-associated microbial community, which has important implications for a broad array of agricultural and horticultural plant pathosystems.


Horticulturae ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 32
Author(s):  
Chiara Amitrano ◽  
Youssef Rouphael ◽  
Stefania De Pascale ◽  
Veronica De Micco

Growing demand for horticultural products of accentuated sensory, nutritional, and functional quality traits has been driven by the turn observed in affluent societies toward a healthy and sustainable lifestyle relying principally on plant-based food. Growing plants under protected cultivation facilitates more precise and efficient modulation of the plant microenvironment, which is essential for improving vegetable quality. Among the environmental parameters that have been researched for optimization over the past, air relative humidity has always been in the background and it is still unclear if and how it can be modulated to improve plants’ quality. In this respect, two differentially pigmented (green and red) Salanova® cultivars (Lactuca sativa L. var. capitata) were grown under two different Vapor Pressure Deficits (VPDs; 0.69 and 1.76 kPa) in a controlled environment chamber in order to appraise possible changes in mineral and phytochemical composition and in antioxidant capacity. Growth and morpho-physiological parameters were also analyzed to better understand lettuce development and acclimation mechanisms under these two VPD regimes. Results showed that even though Salanova plants grown at low VPD (0.69 kPa) increased their biomass, area, number of leaves and enhanced Fv/Fm ratio, plants at high VPD increased the levels of phytochemicals, especially in the red cultivar. Based on these results, we have discussed the role of high VPD facilitated by controlled environment agriculture as a mild stress aimed to enhance the quality of leafy greens.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Avilash K. Cramer ◽  
Deborah Plana ◽  
Helen Yang ◽  
Mary M. Carmack ◽  
Enze Tian ◽  
...  

AbstractThe COVID-19 pandemic has led to widespread shortages of personal protective equipment (PPE) for healthcare workers, including of N95 masks (filtering facepiece respirators; FFRs). These masks are intended for single use but their sterilization and subsequent reuse has the potential to substantially mitigate shortages. Here we investigate PPE sterilization using ionized hydrogen peroxide (iHP), generated by SteraMist equipment (TOMI; Frederick, MD), in a sealed environment chamber. The efficacy of sterilization by iHP was assessed using bacterial spores in biological indicator assemblies. After one or more iHP treatments, five models of N95 masks from three manufacturers were assessed for retention of function based on their ability to form an airtight seal (measured using a quantitative fit test) and filter aerosolized particles. Filtration testing was performed at a university lab and at a National Institute for Occupational Safety and Health (NIOSH) pre-certification laboratory. The data demonstrate that N95 masks sterilized using SteraMist iHP technology retain filtration efficiency up to ten cycles, the maximum number tested to date. A typical iHP environment chamber with a volume of ~ 80 m3 can treat ~ 7000 masks and other items (e.g. other PPE, iPADs), making this an effective approach for a busy medical center.


2020 ◽  
Vol 10 (10) ◽  
pp. 1704-1710
Author(s):  
Yan Liu ◽  
Naiyuan Xi ◽  
Xiangning Zhang ◽  
Nan Liu

Based on shear strength calculation, this paper established an accurate method to measure the ice adhesion strength on any solid surface in an environment chamber by using self-made experimental equipment. The inherent characteristics of material and external environment which have strong influence on ice adhesion strength were investigated. The mechanism of ice adhesion was interpreted by studying the adhesion strength of ice layer with different surface wettability. The smooth steel substrate without any treatment and superhydrophobic surface samples were selected to study the relationship between ice adhesion strength and surface temperature. Meanwhile, the ice peak adhesion strength of the surface after freezing for 20–360 min under different low temperatures was analyzed. The results showed that the equipment provides a scientific and reasonable approach for the researchers to characterize the anti-icing performance of surfaces with different wettability.


Sign in / Sign up

Export Citation Format

Share Document