scholarly journals STUDY ON THE EVALUATION OF THERMAL COMFORT AND DISCOMFORT BASED ON COGNITIVE TEMPERATURE SCALE OF OCCUPANTS

2021 ◽  
Vol 86 (783) ◽  
pp. 517-525
Author(s):  
Yuji SASAKI ◽  
Masaya SAITO
Author(s):  
Frederick H. Rohles

A detailed study of thermal comfort was conducted by exposing 1600 subjects, in groups of 10 subjects each (5 men and 5 women), to 20 dry bulb temperatures at each of eight relative humidities (160 tests). From this study, 15 temperature-humidity conditions were selected (ET: 75.9-79.7°F) and identified as the Modal Comfort Envelope (MCE). Within this envelope 94% of the subjects were either slightly cool, comfortable, or slightly warm; 3% were cool and 3% were warm; and none were hot or cold. To validate these findings, a new sample of 150 subjects was tested and the results of this test agree favorably with the original findings. The MCE was used in a clothing study and in an investigation of thermal comfort in the elderly; the results of these studies are discussed, together with suggestions for the use of the Modal Comfort Envelope, as a tool for examining the thermal sensation as a function of such non-thermal factors as lighting, subject density, sex, and activity. A slightly modified version of the MCE is currently being used as a standard for thermal comfort by ASHRAE and this is examined together with ASHRAE Comfort Standard 55–66, the New ASHRAE Comfort Chart, and the new Effective Temperature Scale.


ICCREM 2020 ◽  
2020 ◽  
Author(s):  
Boshuai Dong ◽  
Chunjing Shang ◽  
Ming Tong ◽  
Jianhong Cai

2019 ◽  
pp. 53-65
Author(s):  
Renata Domingos ◽  
Emeli Guarda ◽  
Elaise Gabriel ◽  
João Sanches

In the last decades, many studies have shown ample evidence that the existence of trees and vegetation around buildings can contribute to reduce the demand for energy by cooling and heating. The use of green areas in the urban environment as an effective strategy in reducing the cooling load of buildings has attracted much attention, though there is a lack of quantitative actions to apply the general idea to a specific building or location. Due to the large-scale construction of high buildings, large amounts of solar radiation are reflected and stored in the canyons of the streets. This causes higher air temperature and surface temperature in city areas compared to the rural environment and, consequently, deteriorates the urban heat island effect. The constant high temperatures lead to more air conditioning demand time, which results in a significant increase in building energy consumption. In general, the shade of the trees reduces the building energy demand for air conditioning, reducing solar radiation on the walls and roofs. The increase of urban green spaces has been extensively accepted as effective in mitigating the effects of heat island and reducing energy use in buildings. However, by influencing temperatures, especially extreme, it is likely that trees also affect human health, an important economic variable of interest. Since human behavior has a major influence on maintaining environmental quality, today's urban problems such as air and water pollution, floods, excessive noise, cause serious damage to the physical and mental health of the population. By minimizing these problems, vegetation (especially trees) is generally known to provide a range of ecosystem services such as rainwater reduction, air pollution mitigation, noise reduction, etc. This study focuses on the functions of temperature regulation, improvement of external thermal comfort and cooling energy reduction, so it aims to evaluate the influence of trees on the energy consumption of a house in the mid-western Brazil, located at latitude 15 ° S, in the center of South America. The methodology adopted was computer simulation, analyzing two scenarios that deal with issues such as the influence of vegetation and tree shade on the energy consumption of a building. In this way, the methodological procedures were divided into three stages: climatic contextualization of the study region; definition of a basic dwelling, of the thermophysical properties; computational simulation for quantification of energy consumption for the four facade orientations. The results show that the façades orientated to north, east and south, without the insertion of arboreal shading, obtained higher values of annual energy consumption. With the adoption of shading, the facades obtained a consumption reduction of around 7,4%. It is concluded that shading vegetation can bring significant climatic contribution to the interior of built environments and, consequently, reduction in energy consumption, promoting improvements in the thermal comfort conditions of users.


2018 ◽  
Vol 17 (2) ◽  
pp. 174-181
Author(s):  
Jonghyun Ji ◽  
Seongmin Jo ◽  
Jongil Bang ◽  
Minki Sung

2017 ◽  
Vol 8 (5) ◽  
pp. 221
Author(s):  
Sugiono Sugiono ◽  
Suluh E. Swara ◽  
Wisnu Wijanarko ◽  
Dwi H. Sulistyarini

2020 ◽  
Vol 51 (10) ◽  
pp. 909-923
Author(s):  
Ibrahim Yasin Terzioglu ◽  
Oguz Turgut
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document