scholarly journals MAXIMUM DISPLACEMENT RESPONSE OF SMRF BUILDINGS CONSIDERING SPECTRAL CHARACTERISTICS OF GROUND MOTIONS AND UNCERTAINTY IN COMPONENT STRENGTH

2008 ◽  
Vol 73 (628) ◽  
pp. 859-866
Author(s):  
Maya OBA ◽  
Yasuhiro MORI
Author(s):  
Akira Sone ◽  
Ichiro Ichihashi ◽  
Arata Masuda

A number of artificial earthquake ground motions compatible with time-frequency characteristics of recorded actual earthquake ground motions as well as the given target response spectrum are generated using wavelet transform. The coefficient of variation (C.O.V..) of maximum displacement on elasto-plastic SDOF systems excited by these artificial ground motions are numerically evaluated.


2011 ◽  
Vol 105-107 ◽  
pp. 491-494
Author(s):  
Tie Jun Liu ◽  
Yong Zhang ◽  
Gang Li ◽  
Feng Hui Wang

In design of solar powered aircraft wing panel, vibration properties of wing panel should be considered, especially for the peak value of dynamic response. In this research, a viscoelastic damping layer is built for vibration isolation, wing panel finite element models of stiffened and no-stiffened structures base on fiber-reinforced laminates with damping layer in the middle are built. Natural frequency and displacement response are analyzed with different thickness of damping layer and structures. Result shows natural frequencies decrease as thickness increased, and that of laminates are lower than stiffened structure. The maximum displacement response value decreased when thickness increased and that of laminates is higher than structured with stiffer. The presented work is helpful for type selection and designing of solar powered aircraft wing panel.


Author(s):  
Ichiro Ichihashi ◽  
Akira Sone ◽  
Arata Masuda ◽  
Daisuke Iba

In this paper, a number of artificial earthquake ground motions compatible with time-frequency characteristics of recorded actual earthquake ground motion as well as the given target response spectrum are generated using wavelet transform. The maximum non-dimensional displacement of elasto-plastic structures excited these artificial earthquake ground motions are calculated numerically. Displacement response, velocity response and cumulative input energy are shown in the case of the ground motion which cause larger displacement response. Under the given design response spectrum, a selection manner of generated artificial earthquake ground motion which causes lager maximum displacement response of elasto-plastic structure are suggested.


2020 ◽  
Vol 10 (4) ◽  
pp. 1230 ◽  
Author(s):  
Mohammad Hamayoun Stanikzai ◽  
Said Elias ◽  
Rajesh Rupakhety

Earthquake response mitigation of a base-isolated (BI) building equipped with (i) a single tuned mass damper at the top of the building, (ii) multiple tuned mass dampers (MTMDs) at the top of the building, and (iii) MTMDs distributed on different floors of the building (d-MTMDs) is studied. The shear-type buildings are modeled by considering only one lateral degree of freedom (DOF) at the floor level. Numerical approach of Newmark’s integration is adopted for solving the coupled, governing differential equations of motion of 5- and 10-story BI buildings with and without TMD schemes. A set of 40 earthquake ground motions, scaled 80 times to get 3200 ground motions, is used to develop simplified fragility curves in terms of the isolator maximum displacement. Incremental dynamic analysis (IDA) is used to develop simplified fragility curves for the maximum target isolator displacement. It is found that TMDs are efficient in reducing the bearing displacement, top floor acceleration, and base shear of the BI buildings. In addition, it was noticed that TMDs are efficient in reducing the probability of failure of BI building. Further, it is found that the MTMDs placed at the top floor and d-MTMDs on different floors of BI buildings are more efficient in decreasing the probability of failure of the BI building when compared with STMD.


Sign in / Sign up

Export Citation Format

Share Document