scholarly journals STRUCTURAL PERFORMANCE OF PRECAST-CONCRETE JOINTS UTILIZING NON-WELDED SPLICE IN PRECAST-WALL RC STRUCTURES

2011 ◽  
Vol 76 (670) ◽  
pp. 2133-2141
Author(s):  
Hiroyuki TAGAWA ◽  
Michiaki HIRAMATSU ◽  
Kiyoshi MASUO ◽  
Toshiyuki KUBOTA
2021 ◽  
Vol 242 ◽  
pp. 112571
Author(s):  
Shaohua He ◽  
Peidong Guan ◽  
Qiao Wang ◽  
Zhi Fang ◽  
Ayman Mosallam

2021 ◽  
Vol 11 (2) ◽  
pp. 506
Author(s):  
Sun-Jin Han ◽  
Inwook Heo ◽  
Jae-Hyun Kim ◽  
Kang Su Kim ◽  
Young-Hun Oh

In this study, experiments and numerical analyses were carried out to examine the flexural and shear performance of a double composite wall (DCW) manufactured using a precast concrete (PC) method. One flexural specimen and three shear specimens were fabricated, and the effect of the bolts used for the assembly of the PC panels on the shear strength of the DCW was investigated. The failure mode, flexural and shear behavior, and composite behavior of the PC panel and cast-in-place (CIP) concrete were analyzed in detail, and the behavioral characteristics of the DCW were clearly identified by comparing the results of tests with those obtained from a non-linear flexural analysis and finite element analysis. Based on the test and analysis results, this study proposed a practical equation for reasonably estimating the shear strength of a DCW section composed of PC, CIP concrete, and bolts utilizing the current code equations.


2007 ◽  
Vol 34 (7) ◽  
pp. 885-889 ◽  
Author(s):  
H El Naggar ◽  
E N Allouche ◽  
M H. El Naggar

Concrete pipes represent the backbone of the municipal storm and wastewater collection systems of Ontario, Canada. Industry and academia partnered on a research effort that aimed at developing new precast-concrete pipe products that provide added value to the final user in comparison with existing products. This paper describes a full-scale experimental evaluation of the design, manufacturing, and performance aspects of a "cellular" concrete pipe, a precast concrete pipe in which multiple continuous conduits were incorporated within its wall. Two fully-instrumented prototype segments of the proposed cellular concrete pipe were manufactured using standard dry-cast manufacturing procedures. The pipe segments were subjected to a D-load test to evaluate their structural performance. The observed structural performance was found to be comparable to solid-wall specimens, particularly when a four-conduit configuration was used. Of the six materials used as conduits, PVC and aluminum were found to perform the best. The presence of the conduits appears to delay the on-set of major cracks, thus increasing the D-load value. Key words: precast, concrete, pipe, experimental, conduit system, trenchless construction methods.


2018 ◽  
Vol 8 (10) ◽  
pp. 1871 ◽  
Author(s):  
Xueyuan Yan ◽  
Suguo Wang ◽  
Canling Huang ◽  
Ai Qi ◽  
Chao Hong

Precast monolithic structures are increasingly applied in construction. Such a structure has a performance somewhere between that of a pure precast structure and that of a cast-in-place structure. A precast concrete frame structure is one of the most common prefabricated structural systems. The post-pouring joint is important for controlling the seismic performance of the entire precast monolithic frame structure. This paper investigated the joints of a precast prestressed concrete frame structure. A reversed cyclic loading test was carried out on two precast prestressed concrete beam–column joints that were fabricated with two different concrete strengths in the keyway area. This testing was also performed on a cast-in-place reinforced concrete joint for comparison. The phenomena such as joint crack development, yielding, and ultimate damage were observed, and the seismic performance of the proposed precast prestressed concrete joint was determined. The results showed that the precast prestressed concrete joint and the cast-in-place joint had a similar failure mode. The stiffness, bearing capacity, ductility, and energy dissipation were comparable. The hysteresis curves were full and showed that the joints had good energy dissipation. The presence of prestressing tendons limited the development of cracks in the precast beams. The concrete strength of the keyway area had little effect on the seismic performance of the precast prestressed concrete joints. The precast prestressed concrete joints had a seismic performance that was comparable to the equivalent monolithic system.


2019 ◽  
Vol 46 (6) ◽  
pp. 467-480
Author(s):  
Tae-Hoon Kim ◽  
Ick-Hyun Kim ◽  
Jae-Hoon Lee ◽  
Hyun Mock Shin

The purpose of this study is to assess the structural performance of hollow bridge columns with triangular confining reinforcement. The proposed triangular reinforcement details were equal to the conventional reinforcement details in terms of required structural performance. The triangular confining reinforcement is also economically feasible and rational, and facilitate shorter construction periods. Three hollow cast-in-situ concrete and three precast concrete bridge columns were tested. The behavior of the hollow columns is discussed in terms of their lateral load-drift relationship, cumulative dissipated energy, and lateral load-strain curves. The nonlinear finite element analysis program RCAHEST (reinforced concrete analysis in higher evaluation system technology) was used to analyze hollow bridge columns, and adopted a modified joint element for the precast concrete bridge columns. The results showed that the proposed innovative reinforcement details were superior to the conventional reinforcement details, in terms of the required structural performance.


Proceedings ◽  
2018 ◽  
Vol 2 (15) ◽  
pp. 1152
Author(s):  
Aidan Reilly ◽  
Richard O'Hegarty ◽  
Oliver Kinnane

This paper presents work developing thin precast concrete sandwich panels for recladding and overcladding applications. These panels are designed for the retrofit of precast concrete structures where the underlying frame is structurally sound. Structural and thermal testing has been carried out to validate the performance of the panels. The panels are designed to have thermal performance better than current national standards, and this has been verified through hot-box testing of components and small-scale panels. Structural performance of the panels has been tested with 3 point bending tests on full-scale panels. Work is in progress towards demonstration of the panels on an occupied building in the UK.


1993 ◽  
Vol 49 (2) ◽  
pp. 371-379
Author(s):  
E.H. Lahlouh ◽  
P. Waldron ◽  
N.J. Woodman

2013 ◽  
Vol 53 ◽  
pp. 116-123 ◽  
Author(s):  
Aizat Alias ◽  
Mohammad Amirulkhairi Zubir ◽  
Khairul Anuar Shahid ◽  
Ahmad Baharuddin Abd RAhman

Sign in / Sign up

Export Citation Format

Share Document