scholarly journals INELASTIC BEHAVIOUR OF COMPOSITE STEEL REINFORCED CONCRETE SHORT COLUMNS YIELDED UNDER BENDING MOMENT : Analytical study

1982 ◽  
Vol 319 (0) ◽  
pp. 56-63
Author(s):  
MAMORU KIMURA
Author(s):  
I.Yu. Belutsky ◽  
◽  
I.V. Lazarev ◽  

Abstract. The publication shows the effectiveness of applying the principle of temporary continuity by combining split span structures into acontinuous couplingusing a temporary joint. The method can be viewed as an option for effort regulation, creating abearing capacity reserveinload-bearing constructions within the span structures of bridges. The calculations provided show the effect on stress rate and bending moment in split span structurescombined into a double-spancontinuous coupling by a temporary joint.


2011 ◽  
Vol 243-249 ◽  
pp. 929-933
Author(s):  
Na Ha ◽  
Lian Guang Wang ◽  
Shen Yuan Fu

In order to improve the bearing capacity of SRC which is related with deformation and stiffiness, SRC beams should be strengthened by CFRP. Based on the experiment of six pre-splitting steel reinforced concrete beams strengthened with (Prestressed) CFRP sheets, the deformation of beams are discussed. Load-deformation curves are obtained by the experiment. Considering the influence of intial bending moment on SRC beams, the calculated deformation formulas of SRC beams strengthened by (Prestressed) CFRP are deduced. The results showed that the load-deformation curves of normal and strengthened beams respectively showed three and two linear characteristics. The theoretical results which calculated by the formulas of deformation are well agreement with the experimental results.


2008 ◽  
Vol 35 (4) ◽  
pp. 384-399 ◽  
Author(s):  
Timo K. Tikka ◽  
S. Ali Mirza

The CSA A23.3 standard permits the use of a moment-magnifier approach for the design of slender reinforced concrete and composite steel–concrete columns. This approach is strongly influenced by the effective flexural stiffness (EI), which varies due to the nonlinearity of the concrete stress–strain curve and the cracking along the column length, among other factors. The EI equations given in the CSA standard are approximate when compared with the EI values computed from the axial load – bending moment – curvature relationships. This study was conducted to determine the influence of a full range of variables on EI used for the design of slender reinforced concrete and composite steel–concrete columns, and also to examine the existing CSA EI equations. Over 27 000 isolated concrete columns, each with a different combination of specified variables, in symmetrical single-curvature bending were simulated to generate the stiffness data. Two new design equations to compute EI of structural concrete columns were then developed from the simulated stiffness data and are proposed as an alternative to the existing CSA design equations for EI.


2013 ◽  
Vol 438-439 ◽  
pp. 519-521
Author(s):  
Cheng Zhu Qiu

t is essential to study the performance of reinforced concrete short column. In this paper, the main reinforcements and hoopings in short columns were replaced by C-BAR reinforcements, the regularity of reinforcing bar replaced by C-BAR reinforcements was summarized. The results show that the axial compression bearing capacity of concrete short column is increased.


Sign in / Sign up

Export Citation Format

Share Document