scholarly journals PROPOSAL OF THE HIGH ORDER MOMENT STANDARDIZING METHOD AND DEFINITION OF RELIABILITY INDEX : A study on reliability-based design using high order moment Part 1

Author(s):  
TETSURO ONO ◽  
HIDEKI IDOTA
1993 ◽  
Author(s):  
K. T. Tsang ◽  
C. Kostas ◽  
A. Mondelli

2018 ◽  
Vol 78 (4) ◽  
pp. 2003-2027 ◽  
Author(s):  
Mohamed Essadki ◽  
Stephane de Chaisemartin ◽  
Frédérique Laurent ◽  
Marc Massot

2020 ◽  
pp. 1-10
Author(s):  
Li Wang

This paper discusses the modeling of financial volatility under the condition of non-normal distribution. In order to solve the problem that the traditional central moment cannot estimate the thick-tailed distribution, the L-moment which is widely used in the hydrological field is introduced, and the autoregressive conditional moment model is used for static and dynamic fitting based on the generalized Pareto distribution. In order to solve the dimension disaster of multidimensional conditional skewness and kurtosis modeling, the multidimensional skewness and kurtosis model based on distribution is established, and the high-order moment model is deduced. Finally, the problems existing in the traditional investment portfolio are discussed, and on this basis, the high-order moment portfolio is further studied. The results show that the key lies in the selection of the model and the assumption of asset probability distribution. Financial risk analysis can be effective only with a large sample. High-frequency data contain more information and can provide rich data resources. The conditional generalized extreme value distribution can well describe the time-varying characteristics of scale parameters and shape parameters and capture the conditional heteroscedasticity in the high-frequency extreme value time series. Better describe the persistence and aggregation of the extreme value of high frequency data as well as the peak and thick tail characteristics of its distribution.


Author(s):  
Po Ting Lin ◽  
Hae Chang Gea ◽  
Yogesh Jaluria

RBDO problems have been intensively studied for many decades. Since Hasofer and Lind defined a measure of the second-moment reliability index, many RBDO methods utilizing the concept of reliability index have been introduced as the Reliability Index Approach (RIA). In the RIA, a reliability analysis problem is formulated to find the reliability index for each performance constraint and the solutions are used to evaluate the failure probability. However, the traditional RIA suffers from inefficiency and convergence problems. In this paper, we revisited the definition of the reliability index and revealed the convergence problem in the traditional RIA. Furthermore, a new definition of the reliability index is proposed to correct this problem and a modified Reliability Index Approach based on this definition is developed. Numerical examples using both the traditional RIA and the modified RIA are compared and discussed.


Sign in / Sign up

Export Citation Format

Share Document