scholarly journals ULTIMATE SHEAR STRENGTH OF VERTICAL CONNECTIONS BETWEEN PRECAST CONCRETE WALL PANELS : Considering dowel action and restraint compression

Author(s):  
Shigeru MOCHIZUKI ◽  
Eiji MAKITANI ◽  
Tomoya NAGASAKA
PCI Journal ◽  
1975 ◽  
Vol 20 (5`) ◽  
pp. 44-64 ◽  
Author(s):  
Armand H. Gustaferro ◽  
Melvin S. Abrams

2020 ◽  
Vol 12 (19) ◽  
pp. 7907
Author(s):  
Hyun-Do Yun ◽  
Hye-Ran Kim ◽  
Won-Chang Choi

Many connection systems are available that can transfer tension and shear loads from a precast concrete wall panel to a floor slab. However, due to the insufficient anchor depth in relatively thin precast concrete panels, it is difficult to attain adequate ductility and stiffness to ensure structural integrity. Based on the authors’ previous research results, the supplementary reinforcement of embedded steel plates in precast concrete wall panels can enhance stiffness while maintaining allowable displacement and ductility. In this study, three full-size tilt-up precast concrete panels with embedded steel plates were fabricated. Lateral cyclic loads were applied to full support structures consisting of a precast concrete wall panel and a foundation. The test results were compared with the results predicted using existing code equations found in the American Concrete Institute 318-14 and the Prestressed Concrete Institute Handbooks. The test results confirm that the supplementary reinforcement of thin precast concrete wall panels can provide (i) the required strength based on current code equations, (ii) sufficient ductility, and (iii) the energy dissipation capacity to resist cyclic loading.


Sign in / Sign up

Export Citation Format

Share Document