scholarly journals PERFORMANCE EVALUATION OF WOOD FRAME STRUCTURE WITH SEISMIC CONTROL DEVICES USING VISCO-ELASTIC DAMPER BASED ON PSEUDO-DYNAMIC ANALYSIS

2012 ◽  
Vol 18 (38) ◽  
pp. 165-170
Author(s):  
Takuya AOKI ◽  
Masayuki NAGANO ◽  
Toshiaki SATO ◽  
Yuichi MASAKI ◽  
Michio IGUCHI
Author(s):  
Kensuke Shiomi

Through the 2011 Tohoku Earthquake or the 2016 Kumamoto Earthquake, much larger earthquakes are considered recently in the seismic designs of large steel-frame structures. When structures are exposed by these severe ground motions, partial destructions in the structures, such as damage or fracture of members could happen. Especially, the low cycle fatigue of steel structures because of the repeated load from these long-term ground motions is a serious problem. However, current seismic performance evaluation method based on nonlinear dynamic analysis considers only elastic and plastic deformation of each member, excluding the fracture of members. If this member fracture happens during earthquakes, there is considered to be many effects on the seismic performance, like the changes of the vibration property, the dynamic response and the energy absorbance capacity of structures. Therefore, the fracture of members is preferably taken into account in the seismic performance evaluation for these large earthquakes. This paper proposes the dynamic analysis method for steel-frame structures which can express the member fracture. Dynamic analyses considering and not considering member fracture under the repeated loads supposing the long-term earthquake are conducted to the FEM model of full-scale structure. By comparing each result, the effects of considering member fracture to the seismic performance such as the dynamic response and the energy absorbance capacity are discussed.


2019 ◽  
Vol 282 ◽  
pp. 02050
Author(s):  
Michael A. Lacasse ◽  
Nathan Van Den Bossche ◽  
Stephanie Van Linden ◽  
Travis V. Moore

There is an increase in the use of hygrothermal models to complete the performance evaluation of walls assemblies, either in respect to design of new assembles or the retrofit of existing wall assemblies. To this end there are guides available in which is provided information on moisture loads to wall assemblies. This includes, for example, Criteria for Moisture-Control Design Analysis in Buildings given in ASHRAE 160, Assessment of moisture transfer by numerical simulation provided in EN 15026, and NRC’s “Guidelines for Design for Durability of the Building Envelope”. The designer of a new assembly or evaluator of an existing wall is tasked with having to determine what moisture loads to apply to the wall and where to apply this load within the assembly. Typically there is little or no information that is readily available regarding moisture loads to walls and thus the suggested hourly moisture load, as given in ASHRAE 160, is 1% by weight of the total driving rain load to the wall (i.e. kg/m2-hr). In this paper, a brief compendium of water entry test results derived from laboratory tests of various types of wall assemblies is provided from which estimates of moisture loads to different types of wall can be developed. Water entry test results are given of wood frame walls typically used in housing, but also metal-glass curtain walls and other commercial wall assemblies, where possible, in terms of driving loads to the wall.


2013 ◽  
Vol 671-674 ◽  
pp. 921-926
Author(s):  
Hai Ling Xing ◽  
Dong Sheng Yao ◽  
Song Tao Xue

A full-scale, three-storey wood frame structure had been tested in-situ to investigate the changes of dynamic properties due to artificial damage. Beams and braces of the test structure were removed, to simulate damage, and then reassembled, to simulate rehabilitation. Free vibration tests were performed during every stage of the tests. The natural frequencies and damping ratios were obtained using modal parameter identification technique based on the Hilbert-Huang Transform. It is shown that, when the structure is damaged or rehabilitated, the natural frequency changes in accord with the structural stiffness in general while the damping ratio varies irregularly.


2007 ◽  
Author(s):  
Daniel Gutierrez ◽  
Sabine Schmidt ◽  
Alban Denys ◽  
Pierre Schnyder ◽  
François O. Bochud ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document