scholarly journals VALIDATION OF BENDING PERFORMANCE OF STRESSED-SKIN PANELS COMPOSED OF STANDARD TIMBER

2019 ◽  
Vol 25 (61) ◽  
pp. 1115-1120
Author(s):  
Motoyoshi TAMAZAWA ◽  
Masahiro INAYAMA ◽  
Kenji AOKI ◽  
Yo OCHIAI ◽  
Hiro KAWAHARA ◽  
...  
2012 ◽  
Vol 271-272 ◽  
pp. 1742-1749
Author(s):  
Peng Cheng Huang ◽  
Qing Hua Yang ◽  
Guan Jun Bao ◽  
Li Bin Zhang

Aimed at existing problems on the bending performance of pneumatic bending joint, a new type of pneumatic bending joint is proposed in this paper. Double flexible pneumatic actuators are used as actuating drivers. Based on the first law of thermodynamics and the joint dynamic equation, the angle dynamic model is established and analyzed. Moreover simplified model is proposed. Meanwhile, its dynamic characteristic is analyzed through simulation analysis. The simulation suggests the following results: in the gas-filled phase, the joint’s pressure response time is about 10ms; while it is about 60ms in the gas-escape phase; and the angle response time of joint is 10 to 20ms. When the joint damping coefficient is increasing, this value will also increase.


2011 ◽  
Vol 54 (4) ◽  
pp. 841-852 ◽  
Author(s):  
Mei Zhan ◽  
ZhiQiang Jiang ◽  
He Yang ◽  
XuDong Xu ◽  
GuangJun Li

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2632
Author(s):  
Yafeng Hu ◽  
Yang Wei ◽  
Si Chen ◽  
Yadong Yan ◽  
Weiyao Zhang

A timber–lightweight−concrete (TLC) composite beam connected with a ductile connector in which the ductile connector is made of a stainless−steel bolt anchored with nuts at both ends was proposed. The push−out results and bending performance of the TLC composite specimens were investigated by experimental testing. The push−out results of the shear specimens show that shear–slip curves exhibit good ductility and that their failure can be attributed to bolt buckling accompanied by lightweight concrete cracking. Through the bending tests of ten TLC composite beams and two contrast (pure timber) beams, the effects of different bolt diameters on the strengthening effect of the TLC composite beams were studied. The results show that the TLC composite beams and contrast timber beams break on the timber fiber at the lowest edge of the TLC composite beam, and the failure mode is attributed to bending failure, whereas the bolt connectors and lightweight concrete have no obvious breakage; moreover, the ductile bolt connectors show a good connection performance until the TLC composite beams fail. The ultimate bearing capacities of the TLC composite beams increase 2.03–3.5 times compared to those of the contrast beams, while the mid-span maximum deformation decrease nearly doubled.


Sign in / Sign up

Export Citation Format

Share Document