Mineral chemistry of the Pioneer Batholith, Beaverhead County, southwestern Montana; microprobe data tables for feldspar, amphibole, mica, pyroxene, and necessary minerals

1990 ◽  
Author(s):  
J.M. Hammarstrom
Author(s):  
Nargess Shirdashtzadeh ◽  
Ghodrat Torabi

The petrography and mineral chemistry of the metamorphosed lherzolite in Darreh-Deh massif (east of Nain Ophiolite, Central Iran) is investigated in order to find the calcium source for rodingitization and tremolitization. In comparison with olivine and orthopyroxene, the clinopyroxene has lower modal content and is more alteration-resistant. The microprobe data and petrography of these lherzolites indicate that Ca2+ cations can be released during serpentinization of orthopyroxene (with ~18 vol% and CaO~2.7 wt%) and clinopyroxene (with ~6 vol% and CaO~ > 20 wt%). In contrast, per- vasive serpentinization of mantle olivine with ~70 vol% and CaO~0.02–0.07 wt% is another expected source for producing Ca2+ rather than metamorphic olivine with CaO~ < 0.02 wt%. The released Ca2+ cannot be completely accommodated in crystal lattice of produced serpentine (with CaO~0.02–0.06 wt%), talc and chlorite (with CaO~0.015 wt%), but it can participate in formation of Ca-bearing tremolite (CaO~13 wt%), as a result of serpentinization of clinopyroxenes or subsequent metamorphism of peridotites at amphibolite facies and in formation of coarse-grained clinopyroxene blades and tremolite during rodingitization. Therefore, the calcium content in clinopyroxene, orthopyroxene and olivine of a plagioclase–free peridotite is a potential source of Ca2+, depending on the degree of serpentinization or chloritization.


2021 ◽  
Author(s):  
Lingling Yuan ◽  
Xiaohui Zhang ◽  
Zhili Yang

Mineral chemistry, geochronological, element geochemical and Sr-Nd-Hf-O isotopic data (Tables S1 and S3–S6), zircon CL images (Fig. S1) and data quality control (Table S2) for the Paleozoic intrusions from the Erenhot region of northern Central Inner Mongolia.


2005 ◽  
Vol 77 (1) ◽  
pp. 169-182 ◽  
Author(s):  
Hartmut Beurlen ◽  
Dwight R. Soares ◽  
Rainer Thomas ◽  
Lucila E. Prado-Borges ◽  
Cláudio de Castro

Tantalate samples, supposedly of the columbite group, were collected in the Borborema Pegmatitic Province, aiming to test the Mn/(Mn+Fe) and Ta/(Ta+Nb) ratios as geochemical indicators of pegmatite fractionation. Surprisingly, preliminary microprobe data allowed recognizing some species, so far unknown in the Province, namely titanian ixiolite, fersmite, brannerite, strüverite, natrobistantite, plumbo- and stibiomicrolite, plumboand uranpyrochlore. The identification of these exotic tantalates with unusual composition, in addition to its distribution in several pegmatites, far from the classical Alto do Giz and Seridozinho pegmatites, indicate that the elevated degree of fractionation is not restricted to these two occurrences but may be reached in other pegmatite areas of the Province. It indicates also that this degree of fractionation may be very variable between pegmatites in small areas. The zoning patterns observed in the titanian ixiolite, with Ti and Nb enrichment at the borders at expense of Ta enriched in the core, are also quite unusual and reverse in comparison with the normal trend of progressive Ta and Mn enrichment in tantalates with the degree of fractionation. A similar "reverse" trend was observed in titanian wodginite of petalite/pollucite bearing pegmatites of the Separation Rapids Province in Ontario, Canada.


2021 ◽  
Author(s):  
Lingling Yuan ◽  
Xiaohui Zhang ◽  
Zhili Yang

Mineral chemistry, geochronological, element geochemical and Sr-Nd-Hf-O isotopic data (Tables S1 and S3–S6), zircon CL images (Fig. S1) and data quality control (Table S2) for the Paleozoic intrusions from the Erenhot region of northern Central Inner Mongolia.


Author(s):  
John T. Armstrong

One of the most cited papers in the geological sciences has been that of Albee and Bence on the use of empirical " α -factors" to correct quantitative electron microprobe data. During the past 25 years this method has remained the most commonly used correction for geological samples, despite the facts that few investigators have actually determined empirical α-factors, but instead employ tables of calculated α-factors using one of the conventional "ZAF" correction programs; a number of investigators have shown that the assumption that an α-factor is constant in binary systems where there are large matrix corrections is incorrect (e.g, 2-3); and the procedure’s desirability in terms of program size and computational speed is much less important today because of developments in computing capabilities. The question thus exists whether it is time to honorably retire the Bence-Albee procedure and turn to more modern, robust correction methods. This paper proposes that, although it is perhaps time to retire the original Bence-Albee procedure, it should be replaced by a similar method based on compositiondependent polynomial α-factor expressions.


Sign in / Sign up

Export Citation Format

Share Document