Metamorphic facies map of Southeastern Alaska; distribution, facies, and ages of regionally metamorphosed rocks

1996 ◽  
Author(s):  
Cynthia Dusel-Bacon ◽  
D.A. Brew ◽  
S.L. Douglass
Keyword(s):  
1992 ◽  
Vol 156 ◽  
pp. 53-62
Author(s):  
A.A Garde

Precambrian orthogneisses exposed in quarries in the Palghat Gap, KeraIa, South India, were photographed for use in geological photogrammetry studies with a 35 mm (small frame) hand-held camera. Local ground control was provided by simple means: hand level, geological compass and 2 m rule. The practical procedure of photography and acquisition of ground control data is described. The stereoscopic photographs, which show complicated field relations in gneisses with prograde, transitional amphibolite to granulite metamorphic facies relations, were studied using multi-model photogrammetry (see Dueholm, 1992) and an analytical plotter. The estimated standard deviations in the stereo models of scale, azimuth and levelling were ± 2%, 2° and 5°, respectively, but the precision was very good (Iess than 1 cm). Outcrop maps were drawn with an on-line plotter at scales varying from 1:25 to 1:200 with contour intervals between 5 and 100 cm. The plot data were transferred, edited on a Macintosh computer and made ready for publication with a vector-based graphics application.


2019 ◽  
Vol 158 (1) ◽  
pp. 104-117 ◽  
Author(s):  
David W. Scholl

AbstractThe submerged forearcs of Pacific subduction zones of North and South America are underlain by a coastally exposed basement of late Palaeozoic to early Tertiary age. Basement is either an igneous massif of an accreted intra-oceanic arc or oceanic plateau (e.g. Cascadia(?), Colombia), an in situ formed arc massif (e.g. Aleutian Arc) or an exhumed accretionary complex of low and high P/T metamorphic facies of late Palaeozoic (e.g. southern Chile, Patagonia) and Mesozoic age (e.g. Alaska). Seismic studies at Pacific forearcs image frontal prisms of trench sediment accreted to the seaward edge of forearc basement. Frontal prisms tend to be narrow (10–40 km), weakly consolidated and volumetrically small (∼35–40 km3/km of trench). In contrast, deep seismic imaging of submerged forearcs commonly reveals large volumes (∼2000 km3/km of trench) of underplated material accreted at subsurface depths of ∼10–30 km to the base of forearc basement. Underplates have been imaged below the southern Chile, Ecuador–Colombia, north Cascade, Alaska, and possibly the eastern Aleutian forearcs. Deep underplates have also been observed below the Japan and New Zealand forearcs. Seismic imaging of northern and eastern Pacific forearcs supports the conclusion drawn from field and laboratory studies that exposed low and high P/T accretionary complexes accumulated in the subsurface at depths of 10–30 km. It seems significant that imaged underplated bodies are characteristic of modern well-sedimented subduction zones. It also seems likely that large Pacific-rim underplates store a significant fraction of sediment subducted in Cenozoic time.


1958 ◽  
pp. 1-251 ◽  
Author(s):  
W. S. FYFE ◽  
F. J. TURNER ◽  
J. VERHOOGEN
Keyword(s):  

1982 ◽  
Vol 19 (12) ◽  
pp. 2258-2275 ◽  
Author(s):  
Léopold Gélinas ◽  
Michel Mellinger ◽  
Pierre Trudel

In a suite of Archean mafic pillows from the Rouyn–Noranda region of Quebec's Abitibi Greenstoné Belt, including both tholeiitic and calc-alkaline varieties spanning the prehnite–pumpellyite to upper greenschist metamorphic facies, three types of alteration can be defined: (I) chlorite–epidote–actinolite; (II) chlorite–epidote; and (III) chlorite ± sericite; the number of mineral phases decreases as a result of progressive hydration from type I to type III alteration. Albitization, resulting from substitution of [Formula: see text], in calcic plagioclase, is highly variable in type I alteration, but in types II and III the plagioclase is totally albitized and in some cases silicified. Chloritization is closely linked to increasing hydration and Ca leaching with MgO and FeO substituting for CaO in ferromagnesian minerals.Calcium was mobilized and carried by solutions, as evidenced by the variable concentration of epidote at the margins of pillows. This calcium leaching generated an excess of Al2O3 with respect to the combined molecular proportions of Na2O, K2O, and CaO, and is shown by the presence of corundum in CIPW norm calculations. In some pillows showing substitution of [Formula: see text], the fo2 of the invading fluid appears to have remained constant, being buffered by the pillow composition; this would be favored by a low water/rock mass ratio. As a result, the initial pillow Fe2O3/FeO ratio remained constant. In other pillows, the fo2 appears to have been imposed by the invading fluid rather than by the mineral assemblage: the FeO/MgO ratios are thus no longer representative of the magmatic composition whereas the ΣFeO/MgO is still representative of the pristine magmatic value.Two types of substitution of CaO by FeO and (or) MgO have been observed: (1) preferential substitution restricted to type I alteration, of FeO over MgO, similar to low-temperature substitution in modern-day sea-floor alteration; and (2) the more common substitution in type II and III alterations in which MgO predominates over FeO, similar to the high-temperature substitution taking place at great depth on the ocean floor.Although the samples were collected to test mineral heterogeneities caused by chemical degradation, more than 40% of the pillows sampled retained their pristine ΣFeO/MgO ratios. The various alteration patterns are independent of the initial tholeiitic or calc-alkaline lineage; this was confirmed using rare earth elements (REE) and inert trace elements such as Zr, Y, and Ti. The chemical changes in the mafic metavolcanic rocks do not obliterate their tholeiitic or calc-alkaline chemical affinities.


Sign in / Sign up

Export Citation Format

Share Document