scholarly journals Sediment transport, particle size, and loads in North Fish Creek in Bayfield County, Wisconsin, water years 1990-91

2016 ◽  
Author(s):  
Matteo Saletti ◽  
Peter Molnar ◽  
Marwan A. Hassan ◽  
Paolo Burlando

Abstract. A new particle-based reduced-complexity model, CAST, to simulate sediment transport and channel morphology in steep streams is presented. CAST contains phenomenological parameterizations, deterministic or stochastic, of sediment supply, bed load transport, particle entrainment and deposition in a cellular-automaton space with uniform grain size. The model can reproduce a realistic bed morphology and typical fluctuations in transport rates observed in steep channels. Particle hop distances, from entrainment to deposition, are well-fitted by exponential distributions, in agreement with field data. The effect of stochasticity both in the entrainment and in the input rate is shown. A stochastic parameterization of the entrainment is essential to create and maintain a realistic channel morphology, while sediment transport in CAST shreds the input signal and its stochastic variability. A jamming routine has been added to CAST to simulate the grain-grain and grain-bed interactions that lead to particle jamming and step formation in a step-pool stream. The results show that jamming is effective in generating steps in unsteady conditions. Steps are created during high- flow periods and they survive during low flows only in sediment- starved conditions, in agreement with the jammed-state hypothesis of Church and Zimmermann (2007). Reduced-complexity models such as CAST can give new insight into the dynamics of complex phenomena (such as sediment transport and bedform stability) and be useful to test research hypotheses, being an effective complement to fully physically-based models.


Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2319
Author(s):  
Micheal Stone ◽  
Bommanna G. Krishnappan ◽  
Uldis Silins ◽  
Monica B. Emelko ◽  
Chris H. S. Williams ◽  
...  

Fine-grained cohesive sediment is the primary vector for nutrient and contaminant redistribution through aquatic systems and is a critical indicator of land disturbance. A critical limitation of most existing sediment transport models is that they assume that the transport characteristics of fine sediment can be described using the same approaches that are used for coarse-grained non-cohesive sediment, thereby ignoring the tendency of fine sediment to flocculate. Here, a modelling framework to simulate flow and fine sediment transport in the Crowsnest River, the Castle River, the Oldman River and the Oldman Reservoir after the 2003 Lost Creek wildfire in Alberta, Canada was developed and validated. It is the first to include explicit description of fine sediment deposition/erosion processes as a function of bed shear stress and the flocculation process. This framework integrates four existing numerical models: MOBED, RIVFLOC, RMA2 and RMA4 using river geometry, flow, fine suspended sediment characteristics and bathymetry data. Sediment concentration and particle size distributions computed by RIVFLOC were used as the upstream boundary condition for the reservoir dispersion model RMA4. The predicted particle size distributions and mass of fine river sediment deposited within various sections of the reservoir indicate that most of the fine sediment generated by the upstream disturbance deposits in the reservoir. Deposition patterns of sediment from wildfire-impacted landscapes were different than those from unburned landscapes because of differences in settling behaviour. These differences may lead to zones of relatively increased internal loading of phosphorus to reservoir water columns, thereby increasing the potential for algae proliferation. In light of the growing threats to water resources globally from wildfire, the generic framework described herein can be used to model propagation of fine river sediment and associated nutrients or contaminants to reservoirs under different flow conditions and land use scenarios. The framework is thereby a valuable tool to support decision making for water resources management and catchment planning.


Author(s):  
Jumpei SUZUKI ◽  
Keiji KAWAKAMI ◽  
Takeshi YOSHIMURA ◽  
Hiroki SHINYA ◽  
Takahiro SATO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document