scholarly journals A Mathematical Model for the Control of the Spread of Meningitis Virus Disease in West Africa- A Disease Free Equilibrium and Local Stability Analysis Approach

2020 ◽  
Vol 08 (04) ◽  
pp. 34-43
Author(s):  
Egahi M. ◽  
Agbata B.C. ◽  
Shior M.M. ◽  
Odo C. E.
2020 ◽  
Vol 2020 ◽  
pp. 1-6 ◽  
Author(s):  
Isa Abdullahi Baba ◽  
Bashir Abdullahi Baba ◽  
Parvaneh Esmaili

In this paper, we developed a model that suggests the use of robots in identifying COVID-19-positive patients and which studied the effectiveness of the government policy of prohibiting migration of individuals into their countries especially from those countries that were known to have COVID-19 epidemic. Two compartmental models consisting of two equations each were constructed. The models studied the use of robots for the identification of COVID-19-positive patients. The effect of migration ban strategy was also studied. Four biologically meaningful equilibrium points were found. Their local stability analysis was also carried out. Numerical simulations were carried out, and the most effective strategy to curtail the spread of the disease was shown.


Author(s):  
Phineas Z. Mawira ◽  
David M. Malonza

Tuberculosis, an airborne infectious disease, remains a major threat to public health in Kenya. In this study, we derived a system of non-linear ordinary differential equations from the SLICR mathematical model of TB to study the effects of hygiene consciousness as a control strategy against TB in Kenya. The effective basic reproduction number (R0) of the model was determined by the next generation matrix approach. We established and analyzed the equilibrium points. Using the Routh-Hurwitz criterion for local stability analysis and comparison theorem for global stability analysis, the disease-free equilibrium (DFE) was found to be locally asymptotically stable given that R0 < 1.  Also by using the Routh-Hurwitz criterion for local stability analysis and Lyapunov function and LaSalle’s invariance principle for global stability analysis, the endemic equilibrium (EE) point was found to be locally asymptotically stable given that R0 > 1. Using MATLAB ode45 solver, we simulated the model numerically and the results suggest that hygiene consciousness can helpin controlling TB disease if incorporated effectively.


BIOMATH ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 2009107
Author(s):  
Joel N. Ndam

A model describing the dynamics of COVID-19 is formulated and examined. The model is meant to address the impacts of lockdown and social isolation as strategies for the eradication of the pandemic. Local stability analysis indicate that the equilibria are locally-asymptotically stable for R0<1 and R_0>1 for the disease-free equilibrium and the endemic equilibrium respectively. Numerical simulations of the model equations show that lockdown is a more effective strategy in the eradication of the disease than social isolation. However, strict enforcement of both strategies is the most effective means that could end the disease within a shorter period of time.


CAUCHY ◽  
2017 ◽  
Vol 5 (1) ◽  
pp. 20
Author(s):  
Joko Harianto

In this paper, we present an SVIR epidemic model with deadly deseases. Initially the basic formulation of the model is presented. Two equilibrium point exists for the system; disease free and endemic equilibrium. The local stability of the disease free and endemic equilibrium exists when the basic reproduction number less or greater than unity, respectively. If the value of R0 less than one then the desease free equilibrium is locally stable, and if its exceeds, the endemic equilibrium is locally stable. The numerical results are presented for illustration.


Filomat ◽  
2019 ◽  
Vol 33 (12) ◽  
pp. 3947-3960 ◽  
Author(s):  
Muhammad Tahir ◽  
Syed Shah ◽  
Gul Zaman ◽  
Tahir Khan

In this subsection, we first formulated the proposed model in there infectious classes and then we derived the basic key value reproductive number, R0 with the help of next generation approach. Then we obtained all the endemic equilibrium points, as well as, local stability analysis, at disease free equilibria and, at endemic equilibria of the related model and shown stable. Further the global stability analysis either, at disease free equilibria, and at endemic equilibria is discussed by constructing Lyapunov function which show the validity of the concern model exist. In the last part of the article numerical simulation is presented for the model which support the model existence with the help of RK-4 method.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1272
Author(s):  
Fengsheng Chien ◽  
Stanford Shateyi

This paper studies the global stability analysis of a mathematical model on Babesiosis transmission dynamics on bovines and ticks populations as proposed by Dang et al. First, the global stability analysis of disease-free equilibrium (DFE) is presented. Furthermore, using the properties of Volterra–Lyapunov matrices, we show that it is possible to prove the global stability of the endemic equilibrium. The property of symmetry in the structure of Volterra–Lyapunov matrices plays an important role in achieving this goal. Furthermore, numerical simulations are used to verify the result presented.


Sign in / Sign up

Export Citation Format

Share Document