Experimental Study of Shock Attenuation in a 106 Joule Arc Heated Shock Tube Using Helium-Argon Mixtures as the Driver Gas

Shock Tubes ◽  
1970 ◽  
pp. 177-185 ◽  
Author(s):  
Dah Yu Cheng
2020 ◽  
Vol 10 (20) ◽  
pp. 7193
Author(s):  
Maciej Skotak ◽  
Jonathan Salib ◽  
Anthony Misistia ◽  
Arturo Cardenas ◽  
Eren Alay ◽  
...  

This study demonstrates the orientation and the "shape factor" have pronounced effects on the development of the localized pressure fields inside of the helmet. We used anatomically accurate headform to evaluate four modern combat helmets under blast loading conditions in the shock tube. The Advanced Combat Helmet (ACH) is used to capture the effect of the orientation on pressure under the helmet. The three modern combat helmets: Enhanced Combat Helmet (ECH), Ops-Core, and Airframe, were tested in frontal orientation to determine the effect of helmet geometry. Using the unhelmeted headform data as a reference, we characterized pressure distribution inside each helmet and identified pressure focal points. The nature of these localized “hot spots” is different than the elevated pressure in the parietal region of the headform under the helmet widely recognized as the under-wash effect also observed in our tests. It is the first experimental study which indicates that the helmet presence increased the pressure experienced by the eyes and the forehead (glabella). Pressure fingerprinting using an array of sensors combined with the application of principle component analysis (PCA) helped elucidate the subtle differences between helmets.


1971 ◽  
Vol 49 (15) ◽  
pp. 1982-1993 ◽  
Author(s):  
F. L. Curzon ◽  
M. G. R. Phillips

The properties of an electric shock tube fitted with a diaphragm are examined. The diaphragm opening process and its effect on the motion of the shock wave are studied. A simple model to account for the diaphragm opening time is given and critical comparisons of theory and results with other work are made.The model works well both for shock tubes employing room temperature driver gas and also for those using heated driver gas. Furthermore, there is strong evidence that the diaphragm opening process is responsible for the accelerating phase of the shock wave motion in both types of shock tube.


2013 ◽  
Vol 724 ◽  
pp. 259-283 ◽  
Author(s):  
G. Mirshekari ◽  
M. Brouillette ◽  
J. Giordano ◽  
C. Hébert ◽  
J.-D. Parisse ◽  
...  

AbstractA fully instrumented microscale shock tube, believed to be the smallest to date, has been fabricated and tested. This facility is used to study the transmission of a shock wave, produced in a large (37 mm) shock tube, into a 34 $\mathrm{\mu} \mathrm{m} $ hydraulic diameter and 2 mm long microchannel. Pressure microsensors of a novel design, with gigahertz bandwidth, are used to obtain pressure–time histories of the microchannel shock wave at five axial stations. In all cases the transmitted shock wave is found to be weaker than the incident shock wave, and is observed to decay both in pressure and velocity as it propagates down the microchannel. These results are compared with various analytical and numerical models, and the best agreement is obtained with a Navier–Stokes computational fluid dynamics computation, which assumes a no-slip isothermal wall boundary condition; good agreement is also obtained with a simple shock tube laminar boundary layer model. It is also found that the flow developing within the microchannel is highly dependent on conditions at the microchannel entrance, which control the mass flux entering into the device. Regardless of the micrometre dimensions of the present facility, shock wave propagation in a microchannel of that scale exhibits a behaviour similar to that observed in large-scale facilities operated at low pressures, and the shock attenuation can be explained in terms of accepted laminar boundary models.


Sign in / Sign up

Export Citation Format

Share Document