distribution of flow
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 19)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 1209 (1) ◽  
pp. 012072
Author(s):  
L Bytčanková

Abstract The construction of shaft intake structures in Slovakia has increased. The shaft intake structures overcome significant vertical height over short horizontal distance. In their front horizontal section, the water flows with free surface, then in the vertical section the flow changes its direction and character to a pressurized flow. The flow of water in these shaft intake structures is therefore very complicated. A hydraulically suitable design of the intake structure is associated with achieving the required parameters of the small hydropower plant (SHPP), but due to the reduction of project costs, the shapes of shaft intake structures of SHPP are often not correctly hydraulically designed. One of the important aspects is the distribution of flow velocity of these intake structures. Uneven distribution of flow velocity causes negative effects on turbine performance. Therefore, the investigation of the effects of shaft intake structure design on flow velocity distribution has been realized. The velocity field at a shaft intake of a small hydropower plant was investigated on a physical model in a hydraulic laboratory using the PIV (Particle Image Velocimetry) method. The PIV measurements were realized for different shaft heights and proved negative effects of the design on the flow homogeneity in the turbine intake.


Author(s):  
Praveen Kumar Sahu

Abstract The proliferation of the cylindrical shock in non-ideal rotating gases accompanying the mixture of crystalline solids with monochromatic radiation as well as magnetic (azimuthal/axial) field is examined. The fluid velocity of ambient media is considered to contain radial, axial, and azimuthal heads. Similarity solutions are achieved. The distribution of flow variables in the medium just behind the shock for the cases of power-law shock paths are analyzed. This is worthy to note, the pressure and density at piston disintegrate in occupancy of an azimuthal magnetic field, therefore suction structures at the axis of symmetry, which is identically in accord with controlled circumstances for trying to produce shock waves.


2021 ◽  
Vol 1203 (2) ◽  
pp. 022102
Author(s):  
Lucia Bytčanková ◽  
Ján Rumann ◽  
Peter Dušička

Abstract Intake structures are an important part of small hydropower plants, which affect the water flow, turbine operation and total power of power plant. The flow quality is significantly influenced by the flow homogeneity in the intakes, as the inhomogeneous flow velocity distribution has a negative impact to the operation of the hydropower plants, such as uneven load on the mechanical parts which leads to decrease in efficiency and faster aging of turbine parts. The paper describes the flow assessment in the intake structures of a low-pressure small hydropower plant (the Stará Ľubovňa small hydropower plant) with respect to the flow homogeneity. The River2D, 2D numerical modelling software, has been used for evaluation of flow in the intakes. Flow simulations for the current state of operation have been modelled. In assessing the current situation of intake structure, scenarios were modelled. The boundary conditions were changed to approximate the various variants of hydropower plant operation. The simulations proved the negative impact of the construction solution for the flow conditions in the intakes. This appears mostly in profiles of coarse racks and screenings where is a significant unequal distribution of flow and significant deviation in flow velocities from the recommended values. The simulations results were evaluated in turbine intake profiles (profile of screenings), where the distribution of flow velocities was evaluated. The flow velocities in this profile were compared with the average flow velocity in the turbine intake profile. In order to optimize the velocity distribution in the intake structure, the modification of the intake shapes has been proposed. The subject of the proposal was to improve flow parameters. Simulations were created for the modification that were subsequently reviewed. The modification was compared to the current situation of the intakes.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 5) ◽  
Author(s):  
Zhi Dou ◽  
Xueyi Zhang ◽  
Jinguo Wang ◽  
Zhou Chen ◽  
Yunbo Wei ◽  
...  

Abstract Soils and other geologic porous media often have contrasting grain size layers associated with a grain size transition zone between layers. However, this transition zone is generally simplified to a plane of zero thickness for modeling assumption, and its influence has always been neglected in previous studies. In this study, an approach combining a deposition process and a random packing process was developed to generate 3D porous media without and with consideration of the transition zone. The direct numerical models for solving the flow and concentration fields were implemented to investigate the influence of the grain size transition on flow and solute transport. Our results showed that although the transition zone occupied 13.6% of the entire layered porous medium, it had little influence on the distribution of flow velocity at the scale of the entire layered porous medium. However, the transition zone had a significant influence on the local flow field, which was associated with the increased spatial variability of velocity and the varied distribution of flow velocity. This varied local flow field could increase the solute residence time and delay the breakthrough time for solute transport. Although using both the advection-dispersion equation (ADE) and the mobile and immobile (MIM) models to fit the breakthrough curves (BTCs) for solute transport through layered porous media resulted in trivial errors, the ADE model failed to capture the influence induced by the local flow field, especially the influence of the transition zone. In contrast, the MIM model was shown to be able to capture the influence of the transition on solute transport. It was found that the mass transfer rate α, a parameter of the MIM model, was significantly improved by the presence of the transition zone, while it decreased as the transition zone fraction increased. Our study emphasized that the transition zone can vary the local flow field at the pore scale, while it has little influence on the hydraulic properties (e.g., hydraulic conductivity) of the macroscale flow field. However, the local flow field varied by the transition zone has a significant influence on solute transport.


Author(s):  
Jeanne Ventre ◽  
Salam Abou Taam ◽  
Jose-Maria Fullana ◽  
Pierre-Yves Lagrée

Abstract The creation of a communication between an artery and a vein (arteriovenous fistula or AVF), to speed up the blood purification during hemodialysis of patients with renal insufficiency, induces significant rheological and mechanical modifications of the vascular network. In this study, we investigated the impact of the creation of an AVF with a zero-dimensional network model of the vascular system of an upper limb and a one-dimensional model around the anastomosis. We compared the simulated distribution of flow rate in this vascular system with Doppler ultrasound measurements. We studied three configurations: before the creation of the AVF, after the creation of the AVF, and after a focal reduction due to a hyper flow rate. The 0D model predicted the bounds of the diameter of the superficial vein that respects the flow constraints, assuming a high capillary resistance. We indeed highlighted the importance of knowing the capillary resistance as it is a decisive parameter in the models. We also found that the model reproduced the Doppler measurements of flow rate in every configuration and predicted the distribution of flow in cases where the Doppler was not available. The 1D model allowed studying the impact of a venous constriction on the flow distribution, and the capillary resistance was still a crucial parameter.


2021 ◽  
Author(s):  
John-Bosco Tran ◽  
Matthew Mientka ◽  
Drew Mogck ◽  
Price Stark

Abstract One of the latest developments in permanent fiber optics is ability to install and complete a well in rapidly based on the needs of the program. This paper will present the drivers leading into the operation, the data collected and the completion advances resulting from a permanent fiber conceived and executed in under four weeks. Completion changes were conceived following direct observations of distribution of flow rate, defined in a Uniformity Index. The resulting changes were cost neutral to the overall program but showed improved completion results and well performance.


2021 ◽  
Vol 62 (2) ◽  
Author(s):  
Constantin Jux ◽  
Andrea Sciacchitano ◽  
Fulvio Scarano

Abstract A method to identify the surface of solid models immersed in fluid flows is devised that examines the spatial distribution of flow tracers. The fluid–solid interface is associated with the distance from the center of a circle to the centroid of the tracers ensemble captured within it. The theoretical foundation of the method is presented for 2D planar interfaces in the limit of a continuous tracer distribution. The discrete regime is analyzed, yielding the uncertainty of this estimator. Also the errors resulting from curved interfaces are discussed. The method's working principle is illustrated using synthetic data of a 2D cambered airfoil, showing that one of the limitations is the treatment of an object thinner than the search circle diameter. The method is readily adapted to 3D and applied to the 3D PTV data of the flow around a juncture. The surface is reconstructed within the expected uncertainty, and specific limitations, such as the smoothing of sharp edges is observed. Graphic abstract


Author(s):  
Lamisa Malik ◽  
◽  
M. Abdul Matin

River off-take is one of the complex features in fluvial systems and the distribution of flow, and sediments along the branches are still a matter of research. This paper deals with a physical simulation on an off-take channel for understanding the flow and sediment distribution in the vicinity. Laboratory-based test runs have been carried out by changing the discharges and the angles off-take. A total of eighteen test runs have been conducted for three discharge conditions with three off-take angles. Two equations for predicting water and sediment discharge ratios have been proposed as a function of Froude number, channel geometry and off-take angel. Flow visualizations have also been carried out in the vicinity of the off-take for understanding erosion and sedimentation pattern. Flow and sediment movement patterns were carefully observed during the simulation and four distinguished zone formations have been noted in the vicinity. Finally, validations of the developed equations have been done with the field data from selected river off-take systems of Bangladesh. Validation results of field data show mean discrepancy ratios of 0.83 for the discharge equation and 0.89 for sediment equation during low flow.


2021 ◽  
Vol 42 ◽  
pp. 2859-2865
Author(s):  
Ahmed Mustaffa Saleem ◽  
Noor Moner Basher ◽  
Anwar Ahmed Yousif

Sign in / Sign up

Export Citation Format

Share Document