Numerical study of equal-channel angular pressing based on the element-free Galerkin method

Author(s):  
Guan Yanjin ◽  
Zhao Guoqun ◽  
Lu Ping
2014 ◽  
Vol 60 (1-4) ◽  
pp. 87-105 ◽  
Author(s):  
Ryszard Staroszczyk

Abstract The paper is concerned with the problem of gravitational wave propagation in water of variable depth. The problem is solved numerically by applying an element-free Galerkin method. First, the proposed model is validated by comparing its predictions with experimental data for the plane flow in water of uniform depth. Then, as illustrations, results of numerical simulations performed for plane gravity waves propagating through a region with a sloping bed are presented. These results show the evolution of the free-surface elevation, displaying progressive steepening of the wave over the sloping bed, followed by its attenuation in a region of uniform depth. In addition, some of the results of the present model are compared with those obtained earlier by using the conventional finite element method.


2012 ◽  
Vol 629 ◽  
pp. 606-610
Author(s):  
Gang Cheng ◽  
Wei Dong Wang ◽  
Dun Fu Zhang

The main draw back of the Moving Least Squares (MLS) approximate used in element free Galerkin method (EFGM) is its lack the property of the delta function. To alleviate difficulties in the treatment of essential boundary conditions in EFGM, the local transformation method and the boundary singular weight method, which are used in the reproducing kernel particle method, is combined with the element free Galerkin method. The computational method is given to analyze the stress intensity factors and the numerical simulation of crack propagation of two-dimentional problems of the elastic fracture analysis. The application examples reveal the effectiveness and feasibility of the present methods.


Sign in / Sign up

Export Citation Format

Share Document