Scanning Capacitance Microscopy: A Valuable Tool to Diagnose Current Paths in 3D-Capacitors Process

Author(s):  
Thomas Delaroque ◽  
Karine Danilo ◽  
Frédéric Voiron ◽  
Catherine Bunel ◽  
Bernadette Domengès ◽  
...  

Abstract Some process abnormalities can be very difficult to detect with conventional FA techniques. Scanning Capacitance Microscopy (SCM) has been shown to be a reliable and versatile tool and the case analysis presented in this work illustrates its significant role. In this paper, a 3D-PICS capacitor used as an element of a band pass filter of a cardiac detection chain was studied. As the electrical and physical diode current signature of this device did not satisfy the targeted needs, a complete failure analysis flow was performed, including OBIRCH and Scanning Capacitance Microscopy characterizations. SCM accumulated measurements allowed extracting and validating a trend according to electrical performance variations from the center to the edge of the wafer. As a result, the root cause of the level of this diode reverse current was identified and corrective actions could be introduced in the process to meet the application requirements.

Author(s):  
Ş. Taha İmeci ◽  
◽  
Bilal Tütüncü ◽  
Faruk Bešlija ◽  
Lamija Herceg ◽  
...  

This paper includes two new microstrip filter configurations for high frequency and Ultra-Wide Band applications. The first proposed filter is a composition of four parallel open-circuited stubs connected by optimized fractal-structured microstrip line. The filter response is a combination of three passing regions, namely low pass from 0.1 GHz to 3 GHz, band-pass from 4.5 GHz to 9 GHz and high pass from 10.5 GHz to 13 GHz, separated by two rejection regions from 3 GHz to 4.5 GHz and 9 GHz to 10.5 GHz. Deep and sharp rejection regions reaching up to -44.6 dB with 40 % fractional bandwidth (FBW) are observed with a good electrical performance. Furthermore, with a comparative table, the advantages of this proposed BSF in terms of FBW, compactness and insertion loss are compared with recently reported related studies. Secondly a dual-band band pass filter implementing a Stepped-Impedance resonator (SIR) and a modified H-shaped structure is presented. This filter is designed to operate in a low pass region up to 3.58 GHz and a band pass region from 15.38 to 21.65 GHz, with a wide stopband region between 4.46 and 14.07 GHz. The simulated and measured results are in good agreement. Compared to its peers, the compact size and low price allow for a wide application of these filter configurations, while passing frequencies allow operation in the unlicensed frequency spectrum, which is popular for high-speed communication. Keywords: Microstrip Filter, Band Pass, Band Stop, Open Stubs, SIR.


2015 ◽  
Vol 2 (3) ◽  
Author(s):  
Tatsuo Ohmachi ◽  
Shusaku Inoue ◽  
Tetsuji Imai

The 2003 Tokachi-oki earthquake (MJ 8.0) occurred off the southeastern coast of Tokachi, Japan, and generated a large tsunami which arrived at Tokachi Harbor at 04:56 with a wave height of 4.3 m. Japan Marine Science and Technology Center (JAMSTEC) recovered records of water pressure and sea-bed acceleration at the bottom of the tsunami source region. These records are first introduced with some findings from Fourier analysis and band-pass filter analysis. Water pressure disturbance lasted for over 30 minutes and the duration was longer than those of accelerations. Predominant periods of the pressure looked like those excited by Rayleigh waves. Next, numerical simulation was conducted using the dynamic tsunami simulation technique able to represent generation and propagation of Rayleigh wave and tsunami, with a satisfactory result showing validity and usefulness of this technique. Keywords: Earthquake, Rayleigh wave, tsunami, near-field


Optik ◽  
2021 ◽  
Vol 226 ◽  
pp. 165924
Author(s):  
Shantanu Mandal ◽  
Kousik Bishayee ◽  
Arindum Mukherjee ◽  
B N Biswas ◽  
Chandan Kumar Sarkar

Sign in / Sign up

Export Citation Format

Share Document