Fracture Morphology and Fracture Toughness Measurement of Polymer-Modified Asphalt Concrete

Author(s):  
Alekh S. Bhurke ◽  
E. Eugene Shin ◽  
Lawrence T. Drzal

Pavement distress occurs through a variety of mechanisms, but it is always controlled by the adhesive and cohesive performance of the asphalt binder. Although the causes of pavement failures are known, the precise mechanisms by which they occur remain to be understood. Observation of the fracture morphology of asphalt concrete can provide some information in this respect. The fracture morphology of asphalt concrete is dependent on the morphology of the binder. A network structure was observed in thin asphalt binder films and the fracture morphology and engineering properties of asphalt concrete were found to be dependent on the network morphology of the asphalt binder. Addition of polymers to asphalt binders causes changes in the nature of the network structure, and its effect can be qualitatively determined by characterizing the fracture morphology. Styrene butadiene styrene (SBS), styrene ethylene butylene styrene (SEBS), styrene butadiene rubber (SBR) latex and an epoxy-terminated reacting polyolefin (Elvaloy AM) were used in this study. A quantitative method to determine the effect of polymer modification on the fracture properties of asphalt concrete is the J-contour integral fracture toughness measurement. An experimental protocol to measure the critical J-integral fracture toughness ( J1 c) was developed and the low temperature (-10°C) J1 c values were determined for SEBS and Elvaloy AM-modified asphalt concrete at three different concentrations.

2003 ◽  
Vol 30 (2) ◽  
pp. 406-413 ◽  
Author(s):  
Kwang W Kim ◽  
Seung Jun Kweon ◽  
Young S Doh ◽  
Tae-Soon Park

The fracture toughness of asphalt concrete increases at low temperature and then decreases at temperatures below a certain level. Some polymers are known to have the property of improving the temperature susceptibility of asphalt binder at low temperatures. Therefore, this study evaluated the fracture toughness (KIC) of some polymer-modified asphalt concretes. Low-density polyethylene (LDPE), styrene–butadiene–styrene (SBS), and a mixed polymer of LDPE and SBS were used in this study. The fracture toughness KIC of normal asphalt concrete was compared with that of polymer-modified asphalt (PMA) concrete, and the effectiveness of polymer modification against falling values of KIC was evaluated at low temperatures. The results showed that PMA concretes, in general, showed better KIC than normal asphalt concretes, and the temperature at which the highest KIC was obtained was lower than that in the case of normal asphalt concrete. Therefore, the PMA concretes evaluated in this study had better fracture resistance than normal asphalt at low temperatures.Key words: asphalt concrete, polymer-modified asphalt, PMA, fracture toughness, differential thermal contraction, low-temperature damage.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5836
Author(s):  
Peifeng Cheng ◽  
Yiming Li ◽  
Zhanming Zhang

To improve the thermal-aging stability and rheological performance of styrene–butadiene rubber (SBR)-modified asphalt, phenolic resin (PF) was introduced in the process of preparing SBR-modified asphalt by melt blending. The effect of PF and SBR on the high and low-temperature rheological performance of the asphalt binder before and after aging was evaluated by a temperature and frequency sweep using a dynamic shear rheometer (DSR). Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), and fluorescence microscopy (FM) were used to further investigate the effect of PF and SBR on the thermal stability and morphological characteristics of the asphalt binder. The results showed that the addition of PF can enhance the high-temperature deformation resistance and short-term aging resistance of SBR-modified asphalt. Moreover, PF and SBR form an embedded network structure within the asphalt binder and alleviate the deterioration of the polymer during the aging process. Compared with SBR-modified asphalt, the chemical system of composite-modified asphalt is more stable, and it can remain stable with an aging time of less than 5 h.


1989 ◽  
Vol 181 (1-2) ◽  
pp. 407-415 ◽  
Author(s):  
F Beltzung ◽  
G Zambelli ◽  
E Lopez ◽  
A.R Nicoll

2021 ◽  
Vol 1036 ◽  
pp. 459-470
Author(s):  
Hong Gang Zhang ◽  
Qiang Huai Zhang ◽  
Xue Ting Wang ◽  
Hua Tan ◽  
Li Ning Gao ◽  
...  

A styrene-butadiene-styrene triblock copolymer (SBS) was grafted with an unsaturated polar monomer (monomer A) composed of maleic anhydride (MAH) and methoxy polyethylene (MPEG) via a ring-opening reaction after epoxidizing styrene-butadiene-styrene triblock copolymer (ESBS). The microscopic changes of SBS before and after grafting has been characterized with Fourier transform infrared spectrum (FT-IR), X-ray photoelectron spectroscopy (XPS) and gel permeation chromatography (GPC). The results revealed that the monomer A was successfully grafted on SBS backbone, and the maximum graft ratio (GR) was 20.32%. To verify the compatibility between SBS and asphalt, solubility parameters and surface free energy (SFE) of SBS, grafted SBS and asphalt were measured. It was found that the solubility parameter and SFE of grafted SBS were closer to asphalt compared with SBS. It also has been confirmed from storage stability that the temperature susceptibility of grafted SBS modified asphalt was reduced in compare with SBS modified asphalt binder. As consequence, the use of grafted copolymer can be considered a suitable alternative for modification of asphalt binder in pavement.


Sign in / Sign up

Export Citation Format

Share Document