New Relationships Between Falling Weight Deflectometer Deflections and Asphalt Pavement Layer Condition Indicators

Author(s):  
Bing Xu ◽  
S. Ranji Ranjithan ◽  
Y. Richard Kim
2022 ◽  
Vol 319 ◽  
pp. 125991
Author(s):  
Xi Jiang ◽  
Jay Gabrielson ◽  
Baoshan Huang ◽  
Yun Bai ◽  
Pawel Polaczyk ◽  
...  

2020 ◽  
Vol 47 (7) ◽  
pp. 846-855
Author(s):  
Dandan Cao ◽  
Changjun Zhou ◽  
Yanqing Zhao ◽  
Guozhi Fu ◽  
Wanqiu Liu

In this study, the field falling weight deflectometer (FWD) data for asphalt pavement with various base types were backcalculated through dynamic and static backcalculation approaches, and the effectiveness of backcalculation approaches was studied. Asphalt concrete (AC) was treated as a viscoelastic material and the complex modulus was obtained using the dynamic approach. The dynamic modulus at a fixed frequency was computed for comparison purposes. The coefficient of variance and the compensating layer effect were assumed as two characteristics for the effectiveness of backcalculation approaches. The results show that the layer property from the dynamic backcalculation approach for different stations were more consistent and showed smaller coefficient of variance, which were more appropriate for the characterization pavement behavior. The elastic moduli from the static approach were more variable and exhibited a compensating layer effect in which a portion of the modulus of one layer was backcalculated into other layers. The dynamic approach is more effective than static approaches in backcalculation of layer properties.


Author(s):  
Claude Villiers ◽  
Reynaldo Roque ◽  
Bruce Dietrich

The transverse profilograph has been recognized as one of the most accurate devices for the measurement of rut depth. However, interpretation of surface transverse profile measurements poses a major challenge in determining the contributions of the different layers to rutting. A literature review has shown that the actual rutting mechanism can be estimated from a surface transverse profile for determination of the relative contribution of the layers to rutting. Unfortunately, much of the research yielded no verification or data. In addition, some techniques presented cannot be used if the rut depth is not well pronounced. Other techniques may be costly and time-consuming. The present research developed an approach that integrates ( a) falling weight deflectometer and core data along with 3.6-m transverse profile measurements to assess the contributions of different pavement layers to rutting and ( b) identifies the presence (or absence) of instability within the asphalt surface layer. This approach can be used regardless of the magnitude of the rut depth. On the basis of the analysis conducted, absolute rut depth should not be used to interpret the performance of the asphalt mixture. In addition, continued instability may not result in an increase in rut depth because the rutted basin broadens as traffic wander compacts or moves the dilated portion of the mixture. The approach developed appears to provide a reasonable way to distinguish between different sources of rutting. The conclusions drawn from analysis of the approach agreed well with observations from the trench cuts taken from four sections.


2013 ◽  
Vol 723 ◽  
pp. 141-148 ◽  
Author(s):  
Jian Guo Wei ◽  
Bin Wang

To evaluate the pre and post change of structure strength of old asphalt pavement field hot regeneration, we use the portable falling weight deflectometer method (PFWD) and benkelman beam method (BB) respectively to do the field test research. The field test researches rely on the ANXIN highway old asphalt pavement field hot regeneration project. We got the data about pre and post regenerations asphalt pavement static bending deflection (l0), PFWD dynamic deflection (lp) and PFWD dynamic modulus (EP). The correlation analysis among static bending deflection, PFWD dynamic deflection and PFWD dynamic modulus suggest that PFWD method is a more stable and reliable method than BB method and PFWD method can be a new evaluation technology for the old asphalt pavement field hot regenerations pavement strength.


Sign in / Sign up

Export Citation Format

Share Document