Interpretation of Transverse Profiles to Determine the Source of Rutting within an Asphalt Pavement System

Author(s):  
Claude Villiers ◽  
Reynaldo Roque ◽  
Bruce Dietrich

The transverse profilograph has been recognized as one of the most accurate devices for the measurement of rut depth. However, interpretation of surface transverse profile measurements poses a major challenge in determining the contributions of the different layers to rutting. A literature review has shown that the actual rutting mechanism can be estimated from a surface transverse profile for determination of the relative contribution of the layers to rutting. Unfortunately, much of the research yielded no verification or data. In addition, some techniques presented cannot be used if the rut depth is not well pronounced. Other techniques may be costly and time-consuming. The present research developed an approach that integrates ( a) falling weight deflectometer and core data along with 3.6-m transverse profile measurements to assess the contributions of different pavement layers to rutting and ( b) identifies the presence (or absence) of instability within the asphalt surface layer. This approach can be used regardless of the magnitude of the rut depth. On the basis of the analysis conducted, absolute rut depth should not be used to interpret the performance of the asphalt mixture. In addition, continued instability may not result in an increase in rut depth because the rutted basin broadens as traffic wander compacts or moves the dilated portion of the mixture. The approach developed appears to provide a reasonable way to distinguish between different sources of rutting. The conclusions drawn from analysis of the approach agreed well with observations from the trench cuts taken from four sections.

2018 ◽  
Vol 45 (5) ◽  
pp. 377-385 ◽  
Author(s):  
Omar Elbagalati ◽  
Momen Mousa ◽  
Mostafa A. Elseifi ◽  
Kevin Gaspard ◽  
Zhongjie Zhang

Backcalculation analysis of pavement layer moduli is typically conducted based on falling weight deflectometer (FWD) measurements; however, the stationary nature of FWD requires lane closure and traffic control. To overcome these limitations, a number of continuous deflection devices were introduced in recent years. The objective of this study was to develop a methodology to incorporate traffic speed deflectometer (TSD) measurements in the backcalculation analysis. To achieve this objective, TSD and FWD measurements were used to train and to validate an artificial neural network (ANN) model that would convert TSD deflection measurements to FWD deflection measurements. The ANN model showed acceptable accuracy with a coefficient of determination of 0.81 and a good agreement between the backcalculated moduli from FWD and TSD measurements. Evaluation of the model showed that the backcalculated layer moduli from TSD could be used in pavement analysis and in structural health monitoring with a reasonable level of accuracy.


2020 ◽  
Vol 47 (7) ◽  
pp. 846-855
Author(s):  
Dandan Cao ◽  
Changjun Zhou ◽  
Yanqing Zhao ◽  
Guozhi Fu ◽  
Wanqiu Liu

In this study, the field falling weight deflectometer (FWD) data for asphalt pavement with various base types were backcalculated through dynamic and static backcalculation approaches, and the effectiveness of backcalculation approaches was studied. Asphalt concrete (AC) was treated as a viscoelastic material and the complex modulus was obtained using the dynamic approach. The dynamic modulus at a fixed frequency was computed for comparison purposes. The coefficient of variance and the compensating layer effect were assumed as two characteristics for the effectiveness of backcalculation approaches. The results show that the layer property from the dynamic backcalculation approach for different stations were more consistent and showed smaller coefficient of variance, which were more appropriate for the characterization pavement behavior. The elastic moduli from the static approach were more variable and exhibited a compensating layer effect in which a portion of the modulus of one layer was backcalculated into other layers. The dynamic approach is more effective than static approaches in backcalculation of layer properties.


2012 ◽  
Vol 178-181 ◽  
pp. 1560-1563 ◽  
Author(s):  
Yan Liu ◽  
Bo Liu

Asphalt pavement of water damage is a major form of our country highway asphalt pavement damage, the paper analyzes pavement structure internal water source, water damage of asphalt pavement of the influence factors, through the determination of the three indexes and asphalt of asphalt mixture splitting tensile strength, water erosion proof of asphalt mixture and its influence, and put forward the corresponding prevention and control measures to improve the pavement performance and extend the service life of road surface has important practical value.


Author(s):  
Rajib B. Mallick ◽  
Animesh Das ◽  
S. Nazarian

The determination of the moduli of subsurface stabilized layers in pavements with unknown and variable layers and thin asphalt layers is a challenging problem. Reliable estimation of moduli cannot be obtained from backcalculation of falling weight deflectometer data. In addition, for many stabilized layers, full-depth intact cores cannot be obtained from the field, and hence, laboratory determination of the moduli is not possible. Analysis of the seismic property of a pavement is a well-known method for estimation of the surface modulus of the pavement. This paper proposes a simple methodology on how seismic data acquired on the pavement surface can be effectively used to estimate the modulus of the surface layer as well as those of the subsequent subsurface layers of a flexible pavement. A research study was conducted on three hot-mix asphalt pavements with a foamed asphalt (FA) stabilized base in Maine. These three pavements were tested with both portable seismic and falling weight deflectometer equipment. Cores were taken from the same locations and tested in the laboratory for their resilient moduli. The modulus values obtained from different tests were compared, the effect of temperature on the modulus of the FA was evaluated, and the deflections computed from layered elastic analysis by use of the predicted modulus of the FA layer were compared with the observed deflections. It is concluded that the portable seismic equipment can be used to determine accurate moduli of subsurface stabilized layers. The practical advantages of using such equipment warrant further study for refinement of the method.


2013 ◽  
Vol 723 ◽  
pp. 141-148 ◽  
Author(s):  
Jian Guo Wei ◽  
Bin Wang

To evaluate the pre and post change of structure strength of old asphalt pavement field hot regeneration, we use the portable falling weight deflectometer method (PFWD) and benkelman beam method (BB) respectively to do the field test research. The field test researches rely on the ANXIN highway old asphalt pavement field hot regeneration project. We got the data about pre and post regenerations asphalt pavement static bending deflection (l0), PFWD dynamic deflection (lp) and PFWD dynamic modulus (EP). The correlation analysis among static bending deflection, PFWD dynamic deflection and PFWD dynamic modulus suggest that PFWD method is a more stable and reliable method than BB method and PFWD method can be a new evaluation technology for the old asphalt pavement field hot regenerations pavement strength.


Sign in / Sign up

Export Citation Format

Share Document