scholarly journals Evaluation of pH-sensitive poly(2-hydroxyethyl methacrylate-co-2-(diisopropylamino)ethyl methacrylate) copolymers as drug delivery systems for potential applications in ophthalmic therapies/ocular delivery of drugs

2015 ◽  
Vol 9 (6) ◽  
pp. 554-566 ◽  
Author(s):  
P. A. Faccia ◽  
F. M. Pardini ◽  
J. I. Amalvy
2021 ◽  
Vol 22 ◽  
Author(s):  
Vaidevi Sethuraman ◽  
Kumar Janakiraman ◽  
Venkateshwaran Krishnaswami ◽  
Ruckmani Kandasamy

Abstract: Stimuli responsive nanocarriers are gaining much attention due to its versatile multifunctional activities including disease diagnosis and treatment. Recently, clinical applications of nano drug delivery systems for cancer treatment make a considerable challenge due to its limited cellular uptake, low bioavailability, poor targetability, stability issues, and unfavourable pharmacokinetics. To overcome these issues researchers are focussing on stimuli responsive systems. Nano carriers elicit its role through endogenous (pH, temperature, enzyme and redox) or exogenous (temperature, light, magnetic field, ultrasound) stimulus. These systems were designed to overcome the shortcomings such as non-specificity and toxicity associated with the conventional drug delivery systems. The pH variation between healthy cells and tumor microenvironment creates a platform towards the generation of pH sensitive nano delivery systems. Herein, we propose to present an overview of various internal and external stimuli responsive behavior based drug delivery systems. Herein the present review will focus specifically on the significance of various pH- responsive nanomaterials such as polymeric nanoparticles, nano micelles, inorganic based pH sensitive drug delivery carriers such as calcium phosphate nanoparticles, and carbon dots in cancer treatment. Moreover, this review elaborates the recent findings on pH based stimuli responsive drug delivery system with special emphasis towards our reported stimuli responsive systems for cancer treatment.


2012 ◽  
Vol 125 (4) ◽  
pp. 3006-3013 ◽  
Author(s):  
I. Altimari ◽  
U. G. Spizzirri ◽  
F. Iemma ◽  
M. Curcio ◽  
F. Puoci ◽  
...  

2009 ◽  
Vol 68 (2) ◽  
pp. 245-249 ◽  
Author(s):  
Cui-Yun Yu ◽  
Bo-Cheng Yin ◽  
Wei Zhang ◽  
Si-Xue Cheng ◽  
Xian-Zheng Zhang ◽  
...  

2007 ◽  
Vol 539-543 ◽  
pp. 577-582
Author(s):  
Silvia Bubeníková ◽  
Igor Lacík ◽  
Dušan Bakoš ◽  
Lucia Vodná

The paper presents the first part of the work focused on preparation of biodegradable chitosan microcapsules with tailored properties for potential applications in medical field as drug temporary carriers. In this paper, we aimed to prepare chitosan and chondroitin sulphate microcapsules using TPP as the second cross-linker and investigate the formation of the capsule membrane and its permeability in dependence on conditions of polyionic complexation. As a model, TPP was used to assess an influence of concentration and reaction time on the microcapsule formation. The method of inverse SEC was used for pores size and permeability limit of capsules assessment. For chitosan/CHS/TPP capsules, the distribution of pores size in the membrane is rather broad, which can be suitable for applications in tissue engineering and drug delivery systems.


NANO ◽  
2015 ◽  
Vol 10 (01) ◽  
pp. 1550010 ◽  
Author(s):  
R. Afshari ◽  
S. Mazinani ◽  
M. Abdouss

Carbon nanotube-natural biopolymer nanovectors have important potential applications in delivery system for drugs and biomolecules. In this work, the use of multi-walled carbon nanotubes (MWCNT) as nanoreservoirs for drug loading and controlled release is demonstrated. We synthesized different carbon nanotube-based drug delivery systems including acid and amide-functionalized MWCNT; chitosan (CS) covalently grafted to functionalized MWCNT and MWCNT-CS nanoparticles (NPs) using an ionotropic gelation method as a sustained-release systems for delivery of Tenofovir (hydrophilic anti-retroviral drug). The prepared NPs as different drug delivery systems were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). As it is shown, in vitro drug release studies indicated that the cumulative release rate of Tenofovir from MWCNT–CS NPs shows the best result and it reaches the maximum value (90%) after about 120 h. Moreover, comparing to ungrafted CNTs, MWCNT–CS shows high dispersability and long-term stability in aqueous medium which approves the effective solubilization of MWCNT followed by grafting with CS.


Sign in / Sign up

Export Citation Format

Share Document