DPX-PE350 for Weed Control in Peanut (Arachis hypogaea L.)

1993 ◽  
Vol 20 (2) ◽  
pp. 97-101 ◽  
Author(s):  
David L. Jordan ◽  
John W. Wilcut ◽  
John S. Richburg

Abstract Field experiments were conducted in 1991 and 1992 in Georgia to determine the efficacy of DPX-PE350 when applied either preplant incorporated (PPI), preemergence (PRE), and early postemergence (EPOST) at rates of 40, 80, or 120 g ae ha-1 for weed control in peanut. Species evaluated included coffee senna [Cassia occidentalis (L.)], Florida beggarweed [Desmodium tortuosum (Sw.) DC.], prickly sida (Sida spinosa L.), smallflower morningglory [Jacquemontia tamnifolia (L.) Griseb.], sicklepod (Cassia obtusifolia L.), and yellow nutsedge (Cyperus esculentus L.). Sicklepod was controlled better with either PPI or PRE applications than with EPOST. Coffee senna control was more consistent with DPX-PE350 applied EPOST. DPX-PE350 controlled prickly sida and smallflower morningglory regardless of application method and rate. DPX-PE350 did not control Florida beggarweed when soil applied. PPI applications were more injurious to peanut than PRE or EPOST applications. Peanut yields tended to decrease as DPX-PE350 rates increased.

1994 ◽  
Vol 21 (1) ◽  
pp. 23-28 ◽  
Author(s):  
John W. Wilcut ◽  
John S. Richburg ◽  
Gerald Wiley ◽  
F. Robert Walls ◽  
Stan R. Jones ◽  
...  

Abstract Field studies conducted in 1990 and 1991 at five locations in Georgia and one location in Virginia in 1991 evaluated imazethapyr [2-[4,5-dihydro-4-methyl-4-(l-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-ethyl-3-pyridinecarboxylic acid] and AC 263,222 [(±)-2[4,5-dihydro-4-methyl-4-(l-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-methyl-3-pyridinecarboxylic acid] for weed control, peanut tolerance, and yield. Imazethapyr and AC 263,222 applied early postemergence (EPOST) controlled smallflower morningglory [Jacquemontia tamnifolia (L.) Griseb], Ipomoea morningglory species, prickly sida (Sida spinosa L.), and coffee senna (Cassia occidentalis L.) greater than 90%. Imazethapyr did not control Florida beggarweed [Desmodium tortuosum (SW.) DC.] or sicklepod (Cassia obtusifolia L.) adequately, with control generally less than 40%. AC 263,222 controlled Florida beggarweed greater than 92% when applied EPOST and from 54 to 100% when applied postemergence (POST). Imazethapyr applied preplant incorporated (PPI) controlled bristly starbur (Acanthospermum hispidium DC.) 89% and imazethapyr and AC 263,222 applied EPOST controlled at least 96%. Imazethapyr controlled yellow nutsedge (Cyperus esculentus L.) 83% when applied PPI and 93% as an EPOST application. AC 263,222 controlled yellow nutsedge at least 90%. Peanut yields were higher with AC 263,222 than with imazethapyr. Imazethapyr systems that included alachlor (2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide), lactofen ([(±)2-ethoxy-l-methyl-2-oxoethyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoate] + 2,4-DB [4-(2,4-dichlorophenoxy)butanoic acid], paraquat [1,1′-dimethyl-4,4′-bipyridinium ion] + 2,4-DB, pyridate [O-(6-chloro-3-phenyl-4-pyridazinyl)-S-octyl carbonothioate] + 2,4-DB, metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-l-methylethyl)acetamide], or 2,4-DB provided yields equivalent to AC 263,222.


2001 ◽  
Vol 28 (1) ◽  
pp. 13-19 ◽  
Author(s):  
T. L. Grey ◽  
D. C. Bridges ◽  
E. F. Eastin

Abstract Field studies were conducted from 1996 to 1998 in Georgia to determine peanut (Arachis hypogaea L.) and weed response to ethalfluralin (0.8 kg ai/ha) plus diclosulam applied preplant incorporated (PPI) at 9, 18, 26, 35 and 52 g ai/ha. Other treatments included ethalfluralin PPI followed by paraquat plus bentazon (140 and 280 g ai/ha, respectively) early postemergence (EPOST) applied alone or following ethalfluralin plus diclosulam (18 and 26 g ai/ha) PPI, ethalfluralin PPI followed by imazapic (71 g ai/ha) postemergence (POST), and ethalfluralin PPI. Ethalfluralin was applied PPI in all herbicide programs. Diclosulam controlled Florida beggarweed [Desmodium tortuosum (Sweet) D.C.], sicklepod [Senna obtusifolia (L.) Irwin and Barneby], and yellow nutsedge (Cyperus esculentus L.) inconsistently, and POST application of paraquat plus bentazon was needed for acceptable control. However, diclosulam controlled common ragweed (Ambrosia artemisiifolia L.), tropic croton (Croton glandulosus Muell-Arg.), wild poinsettia (Euphorbia heterophylla L.), and prickly sida (Sida spinosa L.) without the need for POST herbicides. Higher yields were recorded with diclosulam PPI followed by a sequential application of paraquat plus bentazon than herbicide programs not containing diclosulam or diclosulam alone. Diclosulam PPI followed by sequential applications of paraquat plus bentazon provided greater control of sicklepod and prickly sida that resulted in greater yields. Yields from dicosulam PPI followed by paraquat plus bentazon EPOST were equivalent to yields with paraquat plus bentazon EPOST followed by imazapic POST or imazapic EPOST.


1991 ◽  
Vol 18 (1) ◽  
pp. 26-30 ◽  
Author(s):  
John W. Wilcut ◽  
F. Robert Walls ◽  
David N. Horton

Abstract Field experiments were conducted at the Tidewater Agric. Exp. Station, Suffolk, VA in 1988 and 1989 to evaluate imazethapyr [(±)-2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-ethyl-3-pyridine-carboxylic acid]for broadleaf weed control in peanuts (Arachis hypogaea L.). Imazethapyr was applied preplant-incorporated (PPI), preemergence (PRE), at ground-cracking (GC), and postemergence (POT) at rates of 0.036, 0.071, or 0.105 kg ai ha-1. Several sequential imazathapyr systems were also included. The standard of pendimethalin (N-ethylpropyl)-3, 4-dimethyl-2,6-dinitrobenzenamine) PPI, metolachlor(2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide) PRE, and acifluorfen (5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid) plus bentazon (3-(1-methyethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2, 2-dioxide) POT was included for comparative purposes. Imazethapyr applied either PPI or PRE at 0.071 or 0.105 kg ha-1 provided <90% spurred anoda (Anoda cristata (L.) Schlecht.), control and <96% prickly sida (Sida spinosa L.), control. Eclipta (Eclipta prostrata L.) control was 95% when imazathapyr was applied PRE at 0.105 kg ha-1. Greater than 90% annual morningglory (Ipomoea spp.) control was only achieved with imazethapyr applied PPI or PRE at 0.105 kg ha-1. The standard provided complete control of eclipta, and 51%, 92%, and 94% control of spurred anoda (Anoda cristata (L.) Schlecht.), prickly sida (Sida spinosa L.), and annual morningglories, respectively. Several imazethapyr systems yielded equivalent to the standard. Averaged across all rates, imazathapyr applied PPI yielded 4110 kg ha-1, PRE = 3860 kg ha-1, GC = 3680 kg ha-1, and POT = 3370 kg ha-1. Several imazethapyr systems provided net returns equivalent to the standard. Corn grown the following year was not injured by any imazethapyr treatment to peanuts the previous year.


1999 ◽  
Vol 13 (3) ◽  
pp. 594-598 ◽  
Author(s):  
Shawn D. Askew ◽  
John W. Wilcut ◽  
John R. Cranmer

Flumioxazin plus metolachlor mixtures preemergence (PRE) were evaluated with or without postemergence (POST) herbicides for weed control and peanut (Arachis hypogaea) response in three North Carolina studies. Metolachlor PRE at 2.24 kg ai/ha controlled goosegrass (Eleusine indica) and yellow nutsedge (Cyperus esculentus) 93 and 80%, respectively, and control was not improved with flumioxazin or norflurazon. Metolachlor plus flumioxazin PRE at 0.07 or 0.11 kg ai/ha controlled common lambsquarters (Chenopodium album); entireleaf (Ipomoea hederaceavar.integriuscula), ivyleaf (I. hederacea), and pitted morningglory (I. lacunosa); and prickly sida (Sida spinosa) better than metolachlor plus norflurazon PRE at 1.34 kg ai/ha. Morningglories (Ipomoeaspp.) were controlled 77 and 86% with flumioxazin PRE at 0.07 and 0.11 kg/ha, respectively, and control was increased to nearly 100% with acifluorfen plus 2,4-DB or lactofen plus 2,4-DB POST. Peanut injury by flumioxazin and norflurazon was observed at one location in 1997; however, yields were not reduced. Peanut treated with metolachlor plus flumioxazin PRE at either rate yielded at least 3,750 kg/ha compared to 3,120 kg/ha with metolachlor plus norflurazon PRE or 1,320 kg/ha with metolachlor PRE.


1996 ◽  
Vol 23 (1) ◽  
pp. 9-14 ◽  
Author(s):  
John S. Richburg ◽  
John W. Wilcut ◽  
William K. Vencill

Abstract Field studies conducted in 1992 at Tifton and Midville, GA and in 1993 at Attapulgus, GA evaluated imazethapyr systems for weed control, peanut (Arachis hypogaea L.) injury, and yield. The standard of imazethapyr + paraquat early postemergence (EPOST) followed by paraquat + 2,4-DB + bentazon postemergence (POST) controlled at least 87% of bristly starbur, prickly sida, smallflower morningglory, and yellow nutsedge and the peanut crop yielded 3310 kg/ha. This standard controlled Florida beggarweed (46 and 83% control) and sicklepod (74 and 88% control) in 1992 and 1993; respectively. Imazethapyr PPI at 36 and 72 g/ha controlled bristly starbur 78 and 100%, respectively, and controlled prickly sida and smallflower morningglory at least 90%. Imazethapyr PPI at 36 and 72 g/ha controlled yellow nutsedge 83 and 80%, respectively. Imazethapyr did not control sicklepod or Florida beggarweed. Control of these two species and high peanut yields required a POST application of a paraquat mixture.


2000 ◽  
Vol 27 (1) ◽  
pp. 26-30 ◽  
Author(s):  
W. J. Grichar ◽  
R. G. Lemon ◽  
D. C. Sestak ◽  
K. D. Brewer

Abstract Field experiments were conducted during 1996 and 1997 at four locations in Texas to evaluate metolachlor and dimethenamid for yellow nutsedge (Cyperus esculentus L.) control and peanut (Arachis hypogaea L.) injury. Dimethenamid and metolachlor were applied PPI or PRE at 0.6X to 2x the suggested label rates. Yellow nutsedge failed to develop at one location; however, early season yellow nutsedge control with dimethenamid and metolachlor were similar at one location, and at two other locations metolachlor provided greater nutsedge control than dimethenamid. Furthermore, late season yellow nutsedge control at the three locations was better with metolachlor than dimethenamid. Peanut stunting was 20% higher with metolachlor PRE at the 1x rate than dimethenamid PRE at the 1x rate at two locations when rated 4 or 12 wk after treatment (WAT). Peanut yields were variable but, at one location under weed-free conditions, plots receiving pendimethalin only had the highest yield. With excessive moisture and herbicide rates greater than recommended for field use, both dimethenamid and metolachlor caused peanut stunting. However, metolachlor provided better season-long yellow nutsedge control than dimethenamid.


1996 ◽  
Vol 10 (1) ◽  
pp. 145-152 ◽  
Author(s):  
John S. Richburg ◽  
John W. Wilcut ◽  
Daniel L. Colvin ◽  
Gerald R. Wiley

Field experiments conducted at four locations in Georgia and two locations in Florida during 1992 and 1993 evaluated AC 263,222 application rates and timings, systems, and mixtures for weed control, peanut injury, and yield. All rates of AC 263,222 applied early POST (EPOST) or POST controlledIpomoeamorningglories and smallflower morningglory at least 90%, and purple and yellow nutsedge at least 81%. Florida beggarweed and sicklepod control generally was highest when metolachlor was applied PPI followed by AC 263,222 applied EPOST at 71 g/ha, AC 263,222 at 27 or 36 g/ha plus bentazon plus paraquat applied POST, or with bentazon plus paraquat applied EPOST followed by AC 263,222 applied POST at 36 or 53 g/ha. Acifluorfen and acifluorfen plus bentazon reduced Florida beggarweed and sicklepod control at several locations when applied in mixture with AC 263,222. Common ragweed and hairy indigo control were 85 to 95% with bentazon plus paraquat applied EPOST followed by AC 263,222 applied POST at 36 or 53 g/ha. Highest peanut yields were obtained with treatments providing high levels of weed control.


Weed Science ◽  
1996 ◽  
Vol 44 (3) ◽  
pp. 615-621 ◽  
Author(s):  
John W. Wilcut ◽  
John S. Richburg ◽  
Gerald L. Wiley ◽  
F. Robert Walls

Field studies in 1990 and 1991 at six locations in Georgia and one location in North Carolina evaluated AC 263,222 for weed control, peanut tolerance, and yield. AC 263,222 applied early postemergence at 71 g ai ha−1controlled bristly starbur, coffee senna, common lambsquarters,Ipomoeaspecies, prickly sida, sicklepod, smallflower morningglory, and yellow nutsedge at least 91%. AC 263,222 controlled common cocklebur 77% and Florida beggarweed from 47 to 100%. Crop injury was 4% for AC 263,222 applied once and 12% or less from two applications. Mixtures of bentazon with AC 263,222 did not improve control compared to AC 263,222 alone. Imazethapyr did not improve control of AC 263,222 systems. In several locations, bentazon reduced control of Florida beggarweed with AC 263,222 when applied in a mixture compared to AC 263,222 alone. Weed control from the standard of paraquat plus bentazon applied early postemergence followed by paraquat, bentazon plus 2,4-DB applied POST did not provide the level or spectrum of weed control as AC 263,222 systems.


1989 ◽  
Vol 16 (2) ◽  
pp. 87-91 ◽  
Author(s):  
T. C. Mueller ◽  
P. A. Banks

Abstract RE-40885 (5-(methylamino)-2-phenyl-4-3-(trifluoromethyl phenyl)-3(2H)-furanone), a newly developed herbicide with soil and foliar activity, was evaluated for weed control in peanuts (Arachis hypogea L.). RE-40885 applied to the soil or foliage provided excellent Florida beggarweed (Desmodium tortuosum (Sw.) DC.) and prickly sida (Sida spinosa L.) control at rates of 0.56 to 1.12 kg ai/ha. Sequential applications of RE-40885 were needed to achieve > 90% sicklepod (Cassia obtusifolia L.) control. Texas panicum (Panicum texanum Buckl.) was not adequately controlled by any of the RE-40885 treatments evaluated. Peanuts were not injured by RE-40885 at any of the evaluated rates or application times. The combination of RE-40885 and 2,4-DB applied early postemergence improved sicklepod control 8 weeks after planting when compared to either RE-40885 or 2,4-DB applied alone. The combination of R E-40885 and alachlor applied at peanut emergence improved morningglory (Ipomoea spp.) control 8 weeks after planting and increased peanut yield when compared to either applied alone. All treatments containing RE-40885 resulted in peanut yields that were significantly better than nontreated weedy control plots.


1994 ◽  
Vol 8 (1) ◽  
pp. 23-27 ◽  
Author(s):  
David L. Jordan ◽  
John W. Wilcut ◽  
Leslie D. Fortner

Field experiments conducted in 1988 and 1989 evaluated clomazone alone and in a systems approach for weed control in peanut. Clomazone PPI at 0.8 kg ai/ha controlled common ragweed, prickly sida, spurred anoda, and tropic croton better than ethalfluralin and/or metolachlor applied PPI. POST application of acifluorfen plus bentazon was not needed to control these weeds when clomazone was used. Acifluorfen plus bentazon improved control of these weeds when clomazone was not used and generally were necessary to obtain peanut yields regardless of the soil-applied herbicides. Alachlor PRE did not improve clomazone control of any weed species evaluated. Fall panicum and large crabgrass control was similar with clomazone or clomazone plus ethalfluralin.


Sign in / Sign up

Export Citation Format

Share Document