scholarly journals Imazethapyr Systems for Peanut (Arachis hypogaea L.)

1996 ◽  
Vol 23 (1) ◽  
pp. 9-14 ◽  
Author(s):  
John S. Richburg ◽  
John W. Wilcut ◽  
William K. Vencill

Abstract Field studies conducted in 1992 at Tifton and Midville, GA and in 1993 at Attapulgus, GA evaluated imazethapyr systems for weed control, peanut (Arachis hypogaea L.) injury, and yield. The standard of imazethapyr + paraquat early postemergence (EPOST) followed by paraquat + 2,4-DB + bentazon postemergence (POST) controlled at least 87% of bristly starbur, prickly sida, smallflower morningglory, and yellow nutsedge and the peanut crop yielded 3310 kg/ha. This standard controlled Florida beggarweed (46 and 83% control) and sicklepod (74 and 88% control) in 1992 and 1993; respectively. Imazethapyr PPI at 36 and 72 g/ha controlled bristly starbur 78 and 100%, respectively, and controlled prickly sida and smallflower morningglory at least 90%. Imazethapyr PPI at 36 and 72 g/ha controlled yellow nutsedge 83 and 80%, respectively. Imazethapyr did not control sicklepod or Florida beggarweed. Control of these two species and high peanut yields required a POST application of a paraquat mixture.

Weed Science ◽  
1996 ◽  
Vol 44 (3) ◽  
pp. 615-621 ◽  
Author(s):  
John W. Wilcut ◽  
John S. Richburg ◽  
Gerald L. Wiley ◽  
F. Robert Walls

Field studies in 1990 and 1991 at six locations in Georgia and one location in North Carolina evaluated AC 263,222 for weed control, peanut tolerance, and yield. AC 263,222 applied early postemergence at 71 g ai ha−1controlled bristly starbur, coffee senna, common lambsquarters,Ipomoeaspecies, prickly sida, sicklepod, smallflower morningglory, and yellow nutsedge at least 91%. AC 263,222 controlled common cocklebur 77% and Florida beggarweed from 47 to 100%. Crop injury was 4% for AC 263,222 applied once and 12% or less from two applications. Mixtures of bentazon with AC 263,222 did not improve control compared to AC 263,222 alone. Imazethapyr did not improve control of AC 263,222 systems. In several locations, bentazon reduced control of Florida beggarweed with AC 263,222 when applied in a mixture compared to AC 263,222 alone. Weed control from the standard of paraquat plus bentazon applied early postemergence followed by paraquat, bentazon plus 2,4-DB applied POST did not provide the level or spectrum of weed control as AC 263,222 systems.


2001 ◽  
Vol 28 (1) ◽  
pp. 13-19 ◽  
Author(s):  
T. L. Grey ◽  
D. C. Bridges ◽  
E. F. Eastin

Abstract Field studies were conducted from 1996 to 1998 in Georgia to determine peanut (Arachis hypogaea L.) and weed response to ethalfluralin (0.8 kg ai/ha) plus diclosulam applied preplant incorporated (PPI) at 9, 18, 26, 35 and 52 g ai/ha. Other treatments included ethalfluralin PPI followed by paraquat plus bentazon (140 and 280 g ai/ha, respectively) early postemergence (EPOST) applied alone or following ethalfluralin plus diclosulam (18 and 26 g ai/ha) PPI, ethalfluralin PPI followed by imazapic (71 g ai/ha) postemergence (POST), and ethalfluralin PPI. Ethalfluralin was applied PPI in all herbicide programs. Diclosulam controlled Florida beggarweed [Desmodium tortuosum (Sweet) D.C.], sicklepod [Senna obtusifolia (L.) Irwin and Barneby], and yellow nutsedge (Cyperus esculentus L.) inconsistently, and POST application of paraquat plus bentazon was needed for acceptable control. However, diclosulam controlled common ragweed (Ambrosia artemisiifolia L.), tropic croton (Croton glandulosus Muell-Arg.), wild poinsettia (Euphorbia heterophylla L.), and prickly sida (Sida spinosa L.) without the need for POST herbicides. Higher yields were recorded with diclosulam PPI followed by a sequential application of paraquat plus bentazon than herbicide programs not containing diclosulam or diclosulam alone. Diclosulam PPI followed by sequential applications of paraquat plus bentazon provided greater control of sicklepod and prickly sida that resulted in greater yields. Yields from dicosulam PPI followed by paraquat plus bentazon EPOST were equivalent to yields with paraquat plus bentazon EPOST followed by imazapic POST or imazapic EPOST.


2002 ◽  
Vol 29 (1) ◽  
pp. 24-29 ◽  
Author(s):  
T. L. Grey ◽  
D. C. Bridges ◽  
E. F. Eastin ◽  
G. E. MacDonald

Abstract Field studies were conducted during 1997 and 1998 at three different locations in Georgia to determine peanut and weed response to pendimethalin at 1.1 kg ai/ha applied preplantincorporated (PPI) followed by flumioxazin at 71, 87, and 105 g ai/ha applied preemergence (PRE). Other residual treatments combinations with pendimethalin PPI included flumioxazin mixed with metolachlor or dimethenamid PRE, diclosulam PRE, norflurazon PRE, and imazapic applied postemergence (POST). Herbicide combinations that included flumioxazin controlled Florida beggarweed, tropic croton, and small flower morningglory at least 78% or greater. Late season Florida beggarweed control was 90% or greater with pendimethalin PPI plus flumioxazin at 87 to 105 g/ha applied PRE. Pendimethalin plus flumioxazin did not control sicklepod or yellow nutsedge. Smallflower morningglory control with all herbicide treatments was 90% or greater. Entireleaf morningglory control (when used in combination with pendimethalin PPI) increased from 80% with flumioxazin at 105 g/ha to 90% for flumioxazin in combination with metolachlor. Yields were similar for flumioxazin, norflurazon, imazapic, and diclosulam treated peanut.


1993 ◽  
Vol 20 (2) ◽  
pp. 97-101 ◽  
Author(s):  
David L. Jordan ◽  
John W. Wilcut ◽  
John S. Richburg

Abstract Field experiments were conducted in 1991 and 1992 in Georgia to determine the efficacy of DPX-PE350 when applied either preplant incorporated (PPI), preemergence (PRE), and early postemergence (EPOST) at rates of 40, 80, or 120 g ae ha-1 for weed control in peanut. Species evaluated included coffee senna [Cassia occidentalis (L.)], Florida beggarweed [Desmodium tortuosum (Sw.) DC.], prickly sida (Sida spinosa L.), smallflower morningglory [Jacquemontia tamnifolia (L.) Griseb.], sicklepod (Cassia obtusifolia L.), and yellow nutsedge (Cyperus esculentus L.). Sicklepod was controlled better with either PPI or PRE applications than with EPOST. Coffee senna control was more consistent with DPX-PE350 applied EPOST. DPX-PE350 controlled prickly sida and smallflower morningglory regardless of application method and rate. DPX-PE350 did not control Florida beggarweed when soil applied. PPI applications were more injurious to peanut than PRE or EPOST applications. Peanut yields tended to decrease as DPX-PE350 rates increased.


1994 ◽  
Vol 21 (1) ◽  
pp. 23-28 ◽  
Author(s):  
John W. Wilcut ◽  
John S. Richburg ◽  
Gerald Wiley ◽  
F. Robert Walls ◽  
Stan R. Jones ◽  
...  

Abstract Field studies conducted in 1990 and 1991 at five locations in Georgia and one location in Virginia in 1991 evaluated imazethapyr [2-[4,5-dihydro-4-methyl-4-(l-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-ethyl-3-pyridinecarboxylic acid] and AC 263,222 [(±)-2[4,5-dihydro-4-methyl-4-(l-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-methyl-3-pyridinecarboxylic acid] for weed control, peanut tolerance, and yield. Imazethapyr and AC 263,222 applied early postemergence (EPOST) controlled smallflower morningglory [Jacquemontia tamnifolia (L.) Griseb], Ipomoea morningglory species, prickly sida (Sida spinosa L.), and coffee senna (Cassia occidentalis L.) greater than 90%. Imazethapyr did not control Florida beggarweed [Desmodium tortuosum (SW.) DC.] or sicklepod (Cassia obtusifolia L.) adequately, with control generally less than 40%. AC 263,222 controlled Florida beggarweed greater than 92% when applied EPOST and from 54 to 100% when applied postemergence (POST). Imazethapyr applied preplant incorporated (PPI) controlled bristly starbur (Acanthospermum hispidium DC.) 89% and imazethapyr and AC 263,222 applied EPOST controlled at least 96%. Imazethapyr controlled yellow nutsedge (Cyperus esculentus L.) 83% when applied PPI and 93% as an EPOST application. AC 263,222 controlled yellow nutsedge at least 90%. Peanut yields were higher with AC 263,222 than with imazethapyr. Imazethapyr systems that included alachlor (2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide), lactofen ([(±)2-ethoxy-l-methyl-2-oxoethyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoate] + 2,4-DB [4-(2,4-dichlorophenoxy)butanoic acid], paraquat [1,1′-dimethyl-4,4′-bipyridinium ion] + 2,4-DB, pyridate [O-(6-chloro-3-phenyl-4-pyridazinyl)-S-octyl carbonothioate] + 2,4-DB, metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-l-methylethyl)acetamide], or 2,4-DB provided yields equivalent to AC 263,222.


1995 ◽  
Vol 9 (4) ◽  
pp. 813-818 ◽  
Author(s):  
Timothy L. Grey ◽  
Glenn R. Wehtje ◽  
Robert H. Walker ◽  
Krishna P. Paudel

Field studies were conducted from 1991 through 1993 to compare Weed control, peanut tolerance, yield, and net return from imazethapyr applied alone or in combination with paraquat. Sicklepod and Florida beggarweed were controlled with paraquat early POST followed by a POST application of either paraquat with 2,4-DB or paraquat with 2,4-DB and bentazon. Imazethapyr-based early POST treatments offered no improvement. An early POST application of paraquat with bentazon or imazethapyr was required for maximum control of bristly starbur. Imazethapyr applied alone early POST, with no further treatment, provided optimum yellow nutsedge control. Maximum yield and net return were associated with any paraquat-containing early POST-applied treatment followed by one of the tank mixed POST options.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
W. J. Grichar ◽  
P. A. Dotray

Field studies were conducted from 2007 through 2009 to determine weed efficacy and peanut (Arachis hypogaeaL.) response to herbicide systems that included ethalfluralin applied preplant incorporated. Control of devil's claw (Proboscidea louisianica(Mill.) Thellung), yellow nutsedge (Cyperus esculentusL.), Palmer amaranth (Amaranthus palmeriS. Wats.), and puncturevine (Tribulus terrestrisL.) was most consistent with ethalfluralin followed by either imazapic or imazethapyr applied postemergence. Peanut stunting was 19% when paraquat alone was applied early-postemergence. Stunting increased to greater than 30% when ethalfluralin applied preplant incorporated was followed byS-metolachlor applied preemergence and paraquat applied early-postemergence. Stunting (7%) was also observed when ethalfluralin was followed by flumioxazin plusS-metolachlor applied preemergence with lactofen applied mid-postemergence. Ethalfluralin followed by paraquat applied early-postemergence reduced peanut yield when compared to the nontreated check. Ethalfluralin applied preplant incorporated followed by imazapic applied mid-postemergence provided the greatest yield (6220 kg/ha). None of the herbicide treatments reduced peanut grade (sound mature kernels plus sound splits) when compared with the nontreated check.


2015 ◽  
Vol 42 (2) ◽  
pp. 100-108 ◽  
Author(s):  
W. James Grichar ◽  
Peter A. Dotray ◽  
Luke M. Etheredge

ABSTRACT Field studies were conducted during 2011 and 2012 in the Texas peanut production regions to evaluate encapsulated acetochlor for weed control and cultivar response. Acetochlor alone applied preemergence (PRE) controlled horse purslane, Palmer amaranth, smellmelon, and Texas millet as well as flumioxazin or S-metolachlor. The addition of pendimethalin to either acetochlor, flumioxazin, or S-metolachlor did improve weed control in some instances. In another study comparing the three above mentioned herbicides alone or followed by lactofen postemergence (POST), the addition of lactofen to acetochlor, flumioxazin, or S-metolachlor improved control of smellmelon and Palmer amaranth in some instances but did not affect horse purslane control. In a tolerance study to evaluate potential differences in variety response to acetochlor at 1.26 (1X) and 2.52 kg ai/ha (2X) applied preplant incorporated (PPI), PRE, early postemergence (EPOST), or POST, peanut yield or grade was not affected by either rate of acetochlor or application timing.


1995 ◽  
Vol 9 (4) ◽  
pp. 807-812 ◽  
Author(s):  
John S. Richburg ◽  
John W. Wilcut ◽  
E. Ford Eastin

Field studies at three sites in Georgia evaluated broadleaf weed and nutsedge management in peanut with PPI applications of imazethapyr and metolachlor and POST applications of paraquat in mixture with imazethapyr or bentazon. Imazethapyr at 36 g ai/ha applied PPI alone or in mixture with metolachlor at 2750 g ai/ha controlled coffee senna; entireleaf, ivyleaf, pitted, smallflower, and tall morningglories; bristly starbur; and prickly sida better than metolachlor applied PPI. Yellow nutsedge control was generally higher where metolachlor was applied PPI. Postemergence control of the aforementioned species and sicklepod was similar with paraquat plus imazethapyr and paraquat plus bentazon. Peanut yields with paraquat plus imazethapyr and paraquat plus bentazon were similar. With one exception, peanut yields from imazethapyr PPI systems were higher than metolachlor PPI systems when POST herbicides were not used. Inclusion of metolachlor with PPI application of imazethapyr increased yields only at one location.


Weed Science ◽  
1994 ◽  
Vol 42 (4) ◽  
pp. 601-607 ◽  
Author(s):  
John W. Wilcut ◽  
John S. Richburg ◽  
E. Ford Eastin ◽  
Gerald R. Wiley ◽  
F. Robert Walls ◽  
...  

Field studies conducted at six locations in Georgia and one location in Virginia evaluated imazethapyr and imazethapyr mixtures for weed control, crop tolerance, and peanut yield. Imazethapyr applied early postemergence controlled bristly starbur, coffee senna, common cocklebur,Ipomoeaspecies, jimsonweed, prickly sida, and smallflower morningglory at least 91% and controlled yellow and purple nutsedge 88 and 98%, respectively. Paraquat plus bentazon applied early postemergence did not control the aforementioned weeds as well as imazethapyr or imazethapyr mixtures. Paraquat applied with imazethapyr reduced bristly starbur control 15% compared to imazethapyr alone but did not influence control of the other species. Imazethapyr control of bristly starbur was not improved by the addition of bentazon. Sicklepod control was less than 24% with imazethapyr and was at least 58% with imazethapyr plus paraquat Imazethapyr plus paraquat controlled sicklepod better than paraquat plus bentazon at three of the four locations evaluated. Imazethapyr did not control Florida beggarweed, while imazethapyr plus paraquat controlled at least 53%. Peanut injury was minimal 30 d after application for all treatments.


Sign in / Sign up

Export Citation Format

Share Document