butanoic acid
Recently Published Documents


TOTAL DOCUMENTS

500
(FIVE YEARS 75)

H-INDEX

27
(FIVE YEARS 2)

Author(s):  
Itumeleng B. Setshedi ◽  
Mark G. Smith

Abstract C16H15N3O3, monoclinic, P21/c (no. 14), a = 9.4957(3) Å, b = 18.2275(5) Å, c = 9.0896(3) Å, β = 114.372(1)°, V = 1433.05(15) Å3, Z = 4, R gt (F) = 0.0380, wR ref (F 2) = 0.1011, T = 173 K.


Author(s):  
Feodor Belov ◽  
Alexander Villinger ◽  
Jan von Langermann

This article provides the first single-crystal XRD-based structure of enantiopure (R)-baclofen (form C), C10H12ClNO2, without any co-crystallized substances. In the enantiopure title compound, the molecules arrange themselves in an orthorhombic crystal structure (space group P212121). In the crystal, strong hydrogen bonds and C—H ... Cl bonds interconnect the zwitterionic molecules.


Author(s):  
HOLIS ABDUL HOLIK ◽  
FAISAL MAULANA IBRAHIM ◽  
ABIB LATIFU FATAH ◽  
ARIFUDIN ACHMAD ◽  
ACHMAD HUSSEIN SUNDAWA KARTAMIHARDJA

Objective: This study aims to obtain a good activity of radiotheranostic kit for cancer which is built by combining (S)-2-amino-4-(3,5-dichlorophenyl) butanoic acid (ADPB) with various bifunctional chelators. Methods: This study was conducted through in silico method that consists of molecular docking simulation using AutoDock 4 as well as ADMET prediction using vNN-ADMET and Pre-ADMET. Six bifunctional chelators (i.e. CTPA, DOTA, H2CB-TE2A, H2CB-DO2A, NOTA, and TETA) were conjugated with ADPB as a carrier molecule and further analyzed through molecular docking and ADMET prediction. Results: The results showed that the ADPB-NOTA has the best affinity with the Gibbs free energy (ΔG) of-7.68 kcal/mol with an inhibition constant of 2.36 µM and its ability to bind with the gating residue of LAT1 (ASN258) through hydrogen interactions. Besides that, the ADPB-NOTA compound has a good ADME profile and is predicted to be safe for human use. Conclusion: This study showed that ADPB-NOTA is the most prospective candidate to be used as a radiotheranostic agent.


2021 ◽  
Vol 11 (6) ◽  
pp. 30-35
Author(s):  
Elavarasan, A. ◽  
Dharmaraja J. ◽  
Raj V. ◽  
.Harikrishnan B ◽  
Vadivel S.

A Major role in oxidation kinetics is to determine the reaction mechanism that comprise chemical reaction. In the present paper we derived rate law for reaction mechanism and to recognized the order of reaction, give rate equation, calculate the rate constant. Identify the product of this oxidation reaction.The chemical oxidation of 2-Amino-4-methyl thio-butanoic acid by Quinaldinium Fluorochromate was studied in 50-50 (v/v) selected hydrophilic solvent medium at 308 Kelvin. The reaction is acid catalysed and exhibits first order dependence with respect to oxidant, substrate, and fractional order respect to H+ ion concentrations. Chemical oxidation kinetics is the study of the rate of chemical reaction.the factors Manganesh sulphate, Acrylonitrile, Sodium perchlorate that affect these rates (or) not, and draw of ln Kobs/T verses 1/T energy diagram to find the activation energy. Addition of sodium perchlorate slightly decreases the rate of reaction. However, Acrylonitrile is not induced by the polymerization reaction, showing that there is no free radical route. Added Mn2+ increases with slightly increase rate in the reaction medium. 2-Amino-4-(MethylThio)-Butanoic acid by Quinaldinium Fluorochromate has not been reported. Hence, the investigation of oxidation of 2-Amino-4-Methyl Thio-Butanoic acid by QNFC in selected hydrophilic solvent medium and the corresponding mechanistic aspects are discussed in this research paper. A systematic kinetic work carried out to explore the physical characterization of the reactance. The characterstic effects like Substrate, Oxidant, Perchloric acid, Solvent, Sodium perchlorate, Acrylonitrile, Manganes sulphate and Influence Temperature it clearly shows effect on that reaction path. The process was carried out at four different temperatures to determine the activation conditions. The measured kinetic findings ΔH# and ΔS# are derived from the value.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3311
Author(s):  
Yuchao Zhao ◽  
Md Sazzadur Rahman ◽  
Mengmeng Li ◽  
Guangyong Zhao

The objective of the experiment was to investigate the effects of dietary supplementation with 2-hydroxy-4-(methylthio)-butanoic acid isopropyl ester (HMBi) on the nitrogen (N) metabolism in beef steers. The plasma metabolites analyzed by metabolome profiling were used to clarify the impact mechanism. Three Simmental steers (body weight, 593 ± 23 kg) were used as experimental animals. Three levels of HMBi (i.e., 0, 12, and 24 g d−1) were added in a basal ration as experimental treatments. The steers and the dietary treatments were randomly allocated in a 3 × 3 Latin square design. The results showed that supplementing HMBi up to 24 g d−1 did not affect the N retention and N retention rate (NRR), and the fecal N/urinary N ratio even though it tended to linearly increase the uric acid N/urinary N ratio in steers. The results of plasma metabolome profiling showed that supplementing HMBi at 24 g d−1 upregulated the plasma concentrations of L-methionine (Met); Met-related metabolites including betaine, Met sulfoxide, and taurine; and L-isoleucine and tyrosine, whereas it downregulated L-serine, glycine, diaminopimelic acid, and other metabolites. The reason for the nonsignificant effect of HMBi on improving the N utilization in steers could be that the steers used in the experiment were in the fattening period. It is suggested to evaluate the effects of the dietary addition of HMBi using growing cattle in further research.


Author(s):  
Duo Xu ◽  
Xiaoru Lin ◽  
Xinying Zeng ◽  
Xuejun Wen ◽  
Jingchao Li ◽  
...  

2021 ◽  
Vol 156 ◽  
pp. 112559
Author(s):  
A.M. Api ◽  
D. Belsito ◽  
D. Botelho ◽  
M. Bruze ◽  
G.A. Burton ◽  
...  

2021 ◽  
pp. 108201322110399
Author(s):  
Jana Štefániková ◽  
Július Árvay ◽  
Simona Kunová ◽  
Przemysław Łukasz Kowalczewski ◽  
Miroslava Kačániová

This paper describes the results of the characterization of a traditional Slovak cheese called “May bryndza” with regard to the profiles of volatile organic compounds and lactic acid bacteria. Samples of “May bryndza“ cheese produced solely from unpasteurized ewe's milk were collected from 4 different Slovak farms, and samples of the cheese produced from a mixture of 2 types of milk (raw ewe's and pasteurized cow's milk) were collected from 3 different Slovak industrial dairies. There were 15 compounds detected and identified by the electronic nose. The impact of the kind of milk and the kind of dairy on the aroma profile of the product was not confirmed by PCA. The compounds with the highest relative contents in samples were acetoin (2.59%–24.55%), acetic acid (6.69%–13.39%), methoxy-phenyl-oxime (4.49%–8.52%), butanoic acid (1.89%–5.67%), and 2,3-butanediol (0.98%–4.08%), which were determined with gas chromatography. A total of 1533 isolates of LAB were obtained from the “May bryndza” cheese samples. Four families, five genera, and 19 species were identified with mass spectrometry, and isolated bacteria, both from the farm and industry dairies were the most frequently found to belong to Lactococcus lactis subsp. lactis.


2021 ◽  
pp. 120601
Author(s):  
Đorđe S. Petrović ◽  
Sandra S. Jovičić Milić ◽  
Maja B. Đukić ◽  
Ivana D. Radojević ◽  
Ratomir M. Jelić ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document