scholarly journals On boundedness of the Hilbert transform on Marcinkiewicz spaces

2020 ◽  
Vol 100 (4) ◽  
pp. 26-32
Author(s):  
N.T. Bekbayev ◽  
◽  
K.S. Tulenov ◽  
◽  
◽  
...  

We study boundedness properties of the classical (singular) Hilbert transform (Hf)(t) = p.v.1/π \int_R f(s)/(t − s)ds acting on Marcinkiewicz spaces. The Hilbert transform is a linear operator which arises from the study of boundary values of the real and imaginary parts of analytic functions. Questions involving the H arise therefore from the utilization of complex methods in Fourier analysis, for example. In particular, the H plays the crucial role in questions of norm-convergence of Fourier series and Fourier integrals. We consider the problem of what is the least rearrangement-invariant Banach function space F(R) such that H : Mφ(R) → F(R) is bounded for a fixed Marcinkiewicz space Mφ(R). We also show the existence of optimal rearrangement-invariant Banach function range on Marcinkiewicz spaces. We shall be referring to the space F(R) as the optimal range space for the operator H restricted to the domain Mφ(R) ⊆ Λϕ0(R). Similar constructions have been studied by J.Soria and P.Tradacete for the Hardy and Hardy type operators [1]. We use their ideas to obtain analogues of their some results for the H on Marcinkiewicz spaces.

Author(s):  
Javier Soria ◽  
Pedro Tradacete

We characterize, in the context of rearrangement invariant spaces, the optimal range space for a class of monotone operators related to the Hardy operator. The connection between the optimal range and the optimal domain for these operators is carefully analysed.


2020 ◽  
Vol 2020 (48) ◽  
pp. 17-24
Author(s):  
I.M. Javorskyj ◽  
◽  
R.M. Yuzefovych ◽  
P.R. Kurapov ◽  
◽  
...  

The correlation and spectral properties of a multicomponent narrowband periodical non-stationary random signal (PNRS) and its Hilbert transformation are considered. It is shown that multicomponent narrowband PNRS differ from the monocomponent signal. This difference is caused by correlation of the quadratures for the different carrier harmonics. Such features of the analytic signal must be taken into account when we use the Hilbert transform for the analysis of real time series.


Author(s):  
Jiapeng Liu ◽  
Ting Hei Wan ◽  
Francesco Ciucci

<p>Electrochemical impedance spectroscopy (EIS) is one of the most widely used experimental tools in electrochemistry and has applications ranging from energy storage and power generation to medicine. Considering the broad applicability of the EIS technique, it is critical to validate the EIS data against the Hilbert transform (HT) or, equivalently, the Kramers–Kronig relations. These mathematical relations allow one to assess the self-consistency of obtained spectra. However, the use of validation tests is still uncommon. In the present article, we aim at bridging this gap by reformulating the HT under a Bayesian framework. In particular, we developed the Bayesian Hilbert transform (BHT) method that interprets the HT probabilistic. Leveraging the BHT, we proposed several scores that provide quick metrics for the evaluation of the EIS data quality.<br></p>


Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 65
Author(s):  
Benjamin Akers ◽  
Tony Liu ◽  
Jonah Reeger

A radial basis function-finite differencing (RBF-FD) scheme was applied to the initial value problem of the Benjamin–Ono equation. The Benjamin–Ono equation has traveling wave solutions with algebraic decay and a nonlocal pseudo-differential operator, the Hilbert transform. When posed on R, the former makes Fourier collocation a poor discretization choice; the latter is challenging for any local method. We develop an RBF-FD approximation of the Hilbert transform, and discuss the challenges of implementing this and other pseudo-differential operators on unstructured grids. Numerical examples, simulation costs, convergence rates, and generalizations of this method are all discussed.


2015 ◽  
Vol 2015 ◽  
pp. 1-3 ◽  
Author(s):  
Ming-Chi Lu ◽  
Hsing-Chung Ho ◽  
Chen-An Chan ◽  
Chia-Ju Liu ◽  
Jiann-Shing Lih ◽  
...  

We investigate the interplay between phase synchronization and amplitude synchronization in nonlinear dynamical systems. It is numerically found that phase synchronization intends to be established earlier than amplitude synchronization. Nevertheless, amplitude synchronization (or the state with large correlation between the amplitudes) is crucial for the maintenance of a high correlation between two time series. A breakdown of high correlation in amplitudes will lead to a desynchronization of two time series. It is shown that these unique features are caused essentially by the Hilbert transform. This leads to a deep concern and criticism on the current usage of phase synchronization.


Sign in / Sign up

Export Citation Format

Share Document