scholarly journals ONE-YEAR ANALYSIS OF MEASUREMENTS WITH SOLAR PHOTOMETER IN THENORTHWEST OF GREAT BUENOS AIRES AREA

Anales AFA ◽  
2020 ◽  
Vol 31 (2) ◽  
pp. 46-50
Author(s):  
A. F. Scagliotti ◽  
G. A. Jorge

This paper presents a first photometric study of the aerosol charge in the northwest of Great Buenos Aires area, spe-cifically on the campus of the National University of General Sarmiento (UNGS) in Los Polvorines. For this purpose,one year of manual measurements with a solar photometer has been used and the aerosol optical depth (AOD) calcu-lations were corroborated with the Lambert-Beer law. The results of the AOD histogram at 465 nm and the Ångstrom coefficient vs AOD are related to the study area characteristics, with a clean atmosphere and aerosols categorized in the“clean continental” and “average” groups.

2020 ◽  
Vol 6 (2) ◽  
pp. 66-73
Author(s):  
P. M. Shrestha ◽  
N. P. Chapagain ◽  
I. B. Karki ◽  
K. N. Poudyal

The daily aerosol optical depth (AOD) data are derived from AERONET over Bode, Bhaktapur (27.68° N, 85.39° E, 1297 m above sea level) for a period of one year 2013. Annual mean of Atmospheric turbidity factors are calculated. The effect of different physical as well as meteorological parameters on the Linke turbidity factor was analyzed. The yearly mean of solar insolation, Angstrom exponential (α),Angstrom coefficient of turbidity (β) and Linke turbidity (LT) were found 4.70 ± 1.10kWh/m2/day, 1.13 ± 0.21 ,0.18 ± 0.14 and 5.70 ± 2.46 respectively. Annual average of visibility is 2.98 ± 2.13 km. Result of this research work is beneficial for the further identification, impact and analysis of atmospheric turbidity at different places.


2007 ◽  
Vol 7 (1) ◽  
pp. 1507-1555 ◽  
Author(s):  
J. Badosa ◽  
R. L. McKenzie ◽  
M. Kotkamp ◽  
J. Calbó ◽  
J. A. González ◽  
...  

Abstract. The purpose of this work is determine the extent of closure between measurements and models of UV irradiances at diverse sites using state of the art instruments, models, and the best available data as inputs to the models. These include information about aerosol optical depth (unfortunately not extending down as far into the UVB region as desirable because such information is not generally available), ozone column amounts, as well as vertical profiles of ozone and temperature. We concentrate on clear-sky irradiances, and report the results in terms of UV Index (UVI). Clear-sky data from one year of measurements at each of four diverse sites (Lauder – New Zealand, Mauna Loa Observatory – Hawaii, Boulder – Colorado, and Melbourne – Australia) have been analysed in detail, also taking account of different measurements of ozone, including satellite-derived values, as well as ground measured values, both from Dobson instruments and as retrieved from the UV spectra under study. Previous studies have generally focussed on data from a single site, and for shorter periods. Consequently, this study is the most comprehensive of its kind to date. At Lauder, which is the cleanest low altitude site, we obtained agreement between measurement and model at 5% level, which is consistent with the best agreement found previously. At Mauna Loa Observatory, similar agreement was achieved, but model calculations need to allow for reflections from cloud that are present below the observatory. At this site, there are occasional problems with using satellite-derived ozone. At Boulder, mean agreements were similar but the dispersion around the mean was slightly larger, corresponding to larger uncertainties in the aerosol inputs to the model. However, at Melbourne, which is the only non-NDACC (Network for the Detection of Atmospheric Composition Change) site, there remain unexplained discrepancies. The measured values are significantly lower than the calculated values. We investigate the extent to which this discrepancy can be explained by incomplete knowledge of aerosol extinctions in the UV at this site. We conclude that further information about aerosol optical depth and single scattering albedo in the UVB region is needed to resolve the issues. At the three NDACC sites, the closure provided by the study gives confidence in both the measurements and our ability to model them. The study revealed a limitation in the use of PTFE diffusers when temperatures are lower than approximately 20°C. It also documents the range of clear sky UVI values expected at these diverse sites.


2018 ◽  
Author(s):  
Antje Inness ◽  
Melanie Ades ◽  
Anna Agusti-Panareda ◽  
Jérôme Barré ◽  
Anna Benedictow ◽  
...  

Abstract. The Copernicus Atmosphere Monitoring Service (CAMS) reanalysis is the latest global reanalysis data set of atmospheric composition produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), consisting of 3-dimensional time-consistent atmospheric composition fields, including aerosols and chemical species. The dataset currently covers the period 2003–2016 and will be extended in the future by adding one year each year. A reanalysis for greenhouse gases is being produced separately. The CAMS reanalysis builds on the experience gained during the production of the earlier Monitoring Atmospheric Composition and Climate (MACC) reanalysis and CAMS interim reanalysis. Satellite retrievals of total column CO, tropospheric column NO2, aerosol optical depth and total column, partial column and profile ozone retrievals were assimilated for the CAMS reanalysis with ECMWF’s Integrated Forecasting System. The new reanalysis has an increased horizontal resolution of about 80 km and provides more chemical species at a better temporal resolution (3-hourly analysis fields, 3-hourly forecast fields and hourly surface forecast fields) than the previously produced CAMS interim reanalysis. The CAMS reanalysis has smaller biases compared to independent ozone, carbon monoxide, nitrogen dioxide and aerosol optical depth observations than the previous two reanalyses and is much improved and more consistent in time, especially compared to the MACC reanalysis. The CAMS reanalysis is a dataset that can be used to compute climatologies, study trends, evaluate models, benchmark other reanalyses or serve as boundary conditions for regional models for past periods.


2018 ◽  
Vol 176 ◽  
pp. 08014
Author(s):  
Dandocsi Alexandru ◽  
Sapartoc Georgiana ◽  
Preda Liliana ◽  
Stan Cristina ◽  
Radu Cristian

One year records of AErosolROboticNEtwork (AERONET) sun photometer measurements were analyzed to investigate the seasonal and daily variations of columnar aerosol optical depth. Some irregularities of this time series are associated with aerosol intrusions. The aerosol layers indicated by these irregularities are identified and characterized using the extensive optical data from coincident CALIPSO satellite observations and ground based LIDAR.


2020 ◽  
Vol 10 ◽  
pp. 147-155
Author(s):  
Prakash M. Shrestha ◽  
Usha Joshi ◽  
Narayan P. Chapagain ◽  
Indra B. Karki ◽  
Khem N. Poudyal

The daily aerosol optical depth (AOD) data are derived from AERONET over Jomsom (lat.:28.47°N, long.:83.83°E, alt.: 2,700 m above sea level) for a period of one year 2012. Annual mean of parameters of aerosols are calculated. The effect of different physical as well as meteorological parameters on Angstrom exponential (α) were analyzed. Annual mean of Angstrom exponential (α), Angstrom turbidity coefficient (β) and curvature of AOD (a2) are 1.24 ± 0.54, 0.05 ± 0.04, 4.06 ± 1.44 respectively. Annual average of visibility is 18.48 ± 1.093km. Result of this research work is beneficial for the further identification, impact and analysis of aerosols at different places.


2007 ◽  
Vol 7 (11) ◽  
pp. 2817-2837 ◽  
Author(s):  
J. Badosa ◽  
R. L. McKenzie ◽  
M. Kotkamp ◽  
J. Calbó ◽  
J. A. González ◽  
...  

Abstract. The purpose of this work is determine the extent of closure between measurements and models of UV irradiances at diverse sites using state of the art instruments, models, and the best available data as inputs to the models. These include information about aerosol optical depth (unfortunately not extending down as far into the UVB region as desirable because such information is not generally available), ozone column amounts, as well as vertical profiles of temperature. We concentrate on clear-sky irradiances, and report the results in terms of UV Index (UVI). Clear-sky data from one year of measurements at each of four diverse sites (Lauder – New Zealand, Mauna Loa Observatory – Hawaii, Boulder – Colorado, and Melbourne – Australia) have been analysed in detail, also taking account of different measurements of ozone, including satellite-derived values, as well as ground measured values, both from Dobson instruments and as retrieved from the UV spectra under study. Previous studies have generally focussed on data from a single site, and for shorter periods. As such, it is the most comprehensive study of its kind to date. At Lauder, which is the cleanest low altitude site, we obtained agreement between measurement and model at 5% level, which is consistent with the best agreement found previously. At Mauna Loa Observatory, similar agreement was achieved, but model calculations need to allow for reflections from cloud that are present below the observatory. At this site, there are occasional problems with using satellite-derived ozone. At Boulder, mean agreements were similar but the dispersion around the mean was slightly larger, corresponding to larger uncertainties in the aerosol inputs to the model. However, at Melbourne, which is the only non-NDACC (Network for the Detection of Atmospheric Composition Change) site, there remain unexplained discrepancies. The measured values are significantly lower than the calculated values. We investigate the extent to which this discrepancy can be explained by incomplete knowledge of aerosol extinctions in the UV at this site. We conclude that further information about aerosol optical depth and single scattering albedo in the UVB region is needed to resolve the issues. For more polluted sites (the four considered locations show in general small aerosol load), the uncertainties in the aerosol input parameters would lead to less confidence on the modelling approach. At the three NDACC sites, the closure provided by the study gives confidence in both the measurements and our ability to model them. This study revealed a limitation in the use of PTFE diffusers when temperatures are lower than approximately 20°C. It also documents the range of clear sky UVI values expected at these diverse sites.


2020 ◽  
Vol 16 (1) ◽  
pp. 1-14
Author(s):  
Monim Jiboori ◽  
Nadia Abed ◽  
Mohamed Abdel Wahab

Sign in / Sign up

Export Citation Format

Share Document