scholarly journals Evaluation of some flavanones as potential inhibitors for SARS-CoV-2 by molecular docking and pharmacological analysis

Author(s):  
Fatma Nur ÖZKÖMEÇ ◽  
Mustafa ÇEŞME
Heliyon ◽  
2021 ◽  
pp. e06603
Author(s):  
Ayoub Khaldan ◽  
Soukaina Bouamrane ◽  
Fatima En-Nahli ◽  
Reda El-mernissi ◽  
Khalil El khatabi ◽  
...  

2021 ◽  
Vol 45 (1) ◽  
Author(s):  
P. M. Aja ◽  
P. C. Agu ◽  
E. M. Ezeh ◽  
J. N. Awoke ◽  
H. A. Ogwoni ◽  
...  

Abstract Background Cancer chemotherapy is difficult because current medications for the treatment of cancer have been linked to a slew of side effects; as a result, researchers are tasked with developing greener cancer chemotherapies. Moringa oleifera has been reported with several bioactive compounds which confirm its application for various ailments by traditional practitioners. In this study, we aim to prospect the therapeutic potentials of M. oleifera phytocompounds against cancer proliferation as a step towards drug discovery using a computational approach. Target proteins: dihydrofolate reductase (DHFR) and B-Cell Lymphoid-2 (BCL-2), were retrieved from the RCSB PDB web server. Sixteen and five phytocompounds previously reported in M. oleifera leaves (ML) and seeds (MS), respectively, by gas chromatography–mass spectrometry were synthesized and used in the molecular docking study. For accurate prediction of binding sites of the target proteins; standard inhibitors, Methotrexate (MTX) for DHFR, and Venetoclax (VTC) for BCL-2, were docked together with the test compounds. We further predicted the ADMET profile of the potential inhibitors for an insight into their chance of success as candidates in drug discovery. Results Results for the binding affinities, docking poses, and the interactions showed that ML2, ML4-6, ML8-15, and MS1-5 are potential inhibitors of DHFR and BCL-2, respectively. In the ADMET profile, ML2 and ML4 showed the best drug-likeness by non-violation of Lipski Rule of Five. ML4-6, ML8, ML11, ML14-15, and MS1, MS3-5 exhibit high GI absorption; ML2, ML4-6, ML8, MS1, and MS5 are blood–brain barrier permeants. ML2, ML4, ML9, ML13, and MS2 do not interfere with any of the CYP450 isoforms. The toxicity profile showed that all the potential inhibitors are non-carcinogenic and non-hERG I (human ether-a-go-go related gene I) inhibitors. ML4, ML11, and MS4 are hepatotoxic and ML7, ML10, and MS4 are hERG II inhibitors. A plethora of insights on the toxic endpoints and lethal concentration values showed that ML5, ML13, and MS2 are comparatively less lethal than other potential inhibitors. Conclusion This study has demonstrated that M. oleifera phytocompounds are potential inhibitors of the disease proteins involved in cancer proliferation, thus, an invaluable step toward the discovery of cancer chemotherapy with lesser limitations.


2021 ◽  
pp. 131007
Author(s):  
Norhadi Mohamad ◽  
Phua Yoong Hui ◽  
Mohamad Hafizi Abu Bakar ◽  
Mohammad Tasyriq Che Omar ◽  
Habibah A. Wahab ◽  
...  

2021 ◽  
Vol 6 (14) ◽  
pp. 3468-3486
Author(s):  
Mohamed Reda Aouad ◽  
Daoud J. O. Khan ◽  
Musa A. Said ◽  
Nadia S. Al‐Kaff ◽  
Nadjet Rezki ◽  
...  

2021 ◽  
Vol 1 (1) ◽  
pp. 32-39
Author(s):  
Baiq Ressa Puspita Rizma ◽  
Agus Dwi Ananto ◽  
Anggit Listyacahyani Sunarwidhi

Corona Virus Disease 2019 (COVID-19) is a new strain of coronavirus called SARS-CoV-2, which was identified in Wuhan, China, in December 2019. The rapid transmission of COVID-19 from human to human forced researchers to find a potent drug by setting aside the time-consuming traditional method in drug development. The molecular docking approach is one a reliable method to screening compound from chemical drug or by finding a compound from Indonesian herbal plants. The present study aimed to assess the potency of compounds from five medicinal plants as potential inhibitors of PLpro and 3CLpro from SARS-CoV-2 using molecular study. The molecular docking was performed using Protein-Ligand Ant System (PLANTS) to analyze the potential compounds by the docking score. Remdesivir triphosphate was used as a standard for the comparison of the test compounds. The docking score obtained from the docking of PLpro with native ligand, remdesivir triphosphate, curcumin, demethoxycurcumin, bisdemethoxycurcumin, luteolin, apigenin, quercetin, kaempferol, formononetin-7-O-glucuronide, andrographolide, and neoandrographolide were -111.441, -103.827, -103.609, -102.363, -100.27, -79.6655, -78.6901, -80.9337, -79.4686, -82.1124, -79.1789, and -97.2452, respectively. Meanwhile, docking score with 3CLpro for the same ligand were -64.0074, -86.1811, -81.428, -87.1625, -78.2899, -73.4345, -70.3368, -71.5539, -68.4321, -72.0154, -75.9777, and -93.7746. The docking score data suggest that curcumin was the most potential as a PLpro inhibitor, while neoandrographolide was the best as a 3CLpro inhibitor.


2021 ◽  
Vol 17 (1) ◽  
pp. 212-217
Author(s):  
JH Shazia Fathima ◽  

The mTOR (mammalian or mechanistic Target of Rapamycin) is linked with oral cancer. Therefore, it is of interest to study the molecular docking-based binding of paclitaxel (a FDA approved drug for oral cancer) and its analogues with mTOR. Hence, we report the binding features of 10-Deacetyltaxol, 7-Epi-10-deacetyltaxol, 7-Epi-Taxol and 6alpha-Hydroxypaclitaxel with mTOR for further consideration.


Sign in / Sign up

Export Citation Format

Share Document